Influence of Sintering Temperatures on Pr0.7Ba0.3MnO3 Prepared Using Thermal Treatment Method
DOI:
10.56566/jmsr.v1i3.478Downloads
Abstract
In this work, Pr0.7Ba0.3MnO3 (PBMO) was synthesised using a thermal treatment method with sintering temperature ranging from 800 °C to 1100 °C. X-ray diffraction (XRD) confirmed the formation of pure PBMO phase at 1100 °C, while lower sintering temperatures led to the presence of secondary phase, particularly Pr(Mn2O5). Microstructural analysis revealed significant grain growth with rising sintering temperatures, accompanied by enhanced crystallinity and reduced secondary phases. Magnetic measurements indicated ferromagnetic behaviour at room temperature for all samples. However, the electrical resistivity demonstrates an unexpected increase with sintering temperature, attributed to the influence of secondary phase at lower sintering temperatures and grain growth in the pure PBMO phase at higher sintering temperatures. Additionally, microstructural defects such as oxygen non-stoichiometry or porosity might further contribute to the suppression of the metal-insulator transition temperature. Overall, this study highlights the significant role of sintering temperatures in controlling the phase purity, microstructure and physical behaviour of PBMO samples, offering valuable insights for their potential applications in spintronics or magnetic sensing devices.
Keywords:
Grain boundaries Grain growth Microstructural defects Oxygen stoichiometry Pr-based manganitesReferences
Aguilar, C., Diosa, J., Mosquera, E., & Rodríguez-Páez, J. (2020). Study of the structural and optical properties of nanoparticles of Pr1−xSrxMnO3 (x= 0.1, 0.2, 0.3, 0.4 and 0.5) obtained by a modified polymer complex method. Materials Science and Engineering: B, 260, 114617. https://doi.org/10.1016/j.mseb.2020.114617 DOI: https://doi.org/10.1016/j.mseb.2020.114617
Bouzayen, A., Elghoul, A., Krichene, A., Boudjada, N. C., & Boujelben, W. (2023). Impact of sintering temperature on the structural, magnetic and magnetocaloric properties in La0.75Eu0.05Sr0.2MnO3 manganite. Journal of Alloys and Compounds, 952, 169986. https://doi.org/10.1016/j.jallcom.2023.169986 DOI: https://doi.org/10.1016/j.jallcom.2023.169986
Christopher, B., Rao, A., Nagaraja, B., Prasad, K. S., Okram, G., Sanjeev, G., Petwal, V. C., Verma, V. P., Dwivedi, J., & Poornesh, P. (2018). Correlation between structural and transport properties of electron beam irradiated PrMnO3 compounds. Solid State Communications, 270, 30-37. https://doi.org/10.1016/j.ssc.2017.11.007 DOI: https://doi.org/10.1016/j.ssc.2017.11.007
Dippong, T., Levei, E. A., Deac, I. G., Petean, I., & Cadar, O. (2022). Dependence of structural, morphological and magnetic properties of manganese ferrite on Ni-Mn substitution. International Journal of Molecular Sciences, 23(6), 3097. https://doi.org/10.3390/ijms23063097 DOI: https://doi.org/10.3390/ijms23063097
dos Santos-Gómez, L., Zamudio-García, J., Caizán-Juanarena, L., Porras-Vázquez, J. M., & Marrero-López, D. (2024). Design and optimization of self-assembled nanocomposite electrodes for SOFCs. Journal of Power Sources, 613, 234866. https://doi.org/10.1016/j.jpowsour.2024.234866 DOI: https://doi.org/10.1016/j.jpowsour.2024.234866
Fan, L., Liu, L., Wang, Y., Huo, H., & Xiong, Y. (2014). A novel processing method of Sr0.7Y0.3CoO2.65−δ cathode for intermediate temperature solid oxide fuel cells. Ceramics International, 40(3), 4939-4944. https://doi.org/10.1016/j.ceramint.2013.10.088 DOI: https://doi.org/10.1016/j.ceramint.2013.10.088
Gamzatov, A., Batdalov, A., Abdulkadirova, N., Aliev, A., Khovaylo, V., Thanh, T., Dung, N., & Yu, S.-C. (2023). Giant magnetothermal anomalies and direct measurements of the magnetocaloric effect in Pr0.7Sr0.3−xBaxMnO3 manganites. Journal of Alloys and Compounds, 964, 171330. https://doi.org/10.1016/j.jallcom.2023.171330 DOI: https://doi.org/10.1016/j.jallcom.2023.171330
Hanen, R., Mleiki, A., Rahmouni, H., Guermazi, N., Khirouni, K., & Cheikhrouhou, A. (2020). Study of electrical properties of (Pr/Ca/Pb)MnO3 ceramic. Journal of Materials Science: Materials in Electronics, 31, 16830-16837. https://doi.org/10.1007/s10854-020-04237-2 DOI: https://doi.org/10.1007/s10854-020-04237-2
Hizi, W., Rahmouni, H., Gorji, N. E., Guesmi, A., Ben Hamadi, N., Khezami, L., Dhahri, E., Khirouni, K., & Gassoumi, M. (2022). Impact of sintering temperature on the electrical properties of La0.9Sr0.1MnO3 manganite. Catalysts, 12(3), 340. https://doi.org/10.3390/catal12030340 DOI: https://doi.org/10.3390/catal12030340
Hon, X. T., Lau, L. N., Lim, K. P., Kechik, M. M. A., Chen, S. K., Shabdin, M. K., Miryala, M., & Shaari, A. H. (2024). The magnificent manifestation of Nd0.7Sr0.3MnO3 ceramics: A comprehensive exploration of different wet chemical routes via sol-gel and thermal treatment methods. Journal of Alloys and Compounds, 1004, 175733. https://doi.org/10.1016/j.jallcom.2024.175733 DOI: https://doi.org/10.1016/j.jallcom.2024.175733
Hon, X. T., Lau, L. N., Lim, K. P., Wong, Y. J., Ishak, A. N., Kechik, M. M. A., Chen, S. K., Shabdin, M. K., & Shaari, A. H. (2023). Thermal treatment method: A novel approach to prepare Nd0.7Sr0.3MnO3 manganite. Physica B: Condensed Matter, 650, 414565. https://doi.org/10.1016/j.physb.2022.414565 DOI: https://doi.org/10.1016/j.physb.2022.414565
Kekade, S. S., Yadav, P., Thombare, B. R., Dusane, P. R., Phase, D., Choudhari, R., & Patil, S. (2019). Effect of sintering temperature on electronic properties of nanocrystalline La0.7Sr0.3MnO3. Materials Research Express, 6(9), 096108. https://doi.org/10.1088/2053-1591/ab2f27?urlappend=%3Futm_source%3Dresearchgate.net%26utm_medium%3Darticle DOI: https://doi.org/10.1088/2053-1591/ab2f27
Khelifi, M., M’nassri, R., Selmi, A., Rahmouni, H., Khirouni, K., Boudjada, N. C., & Cheikhrouhou, A. (2017). Investigation of magnetic and transport properties of PrCa(MnCo)O prepared by solid state process. Journal of Magnetism and Magnetic Materials, 423, 20-26. https://doi.org/10.1016/j.jmmm.2016.09.069 DOI: https://doi.org/10.1016/j.jmmm.2016.09.069
Lakouader, A., Hadouch, Y., Mezzane, D., Laguta, V., Dolocan, V. O., Novak, N., Hajji, L., Razumnaya, A., Alimoussa, A., & Kutnjak, Z. (2023). Impact of polymeric precursor and auto-combustion on the structural, microstructural, magnetic, and magnetocaloric properties of La0.8Sr0.2MnO3. Journal of Magnetism and Magnetic Materials, 586, 171225. https://doi.org/10.1016/j.jmmm.2023.171225 DOI: https://doi.org/10.1016/j.jmmm.2023.171225
Ling, F., Zhang, H., Li, L., Yu, P., Li, Y., Yang, S., & Chen, Q. (2020). Effect of sintering temperature on structural and electrical transport properties of La0.7Ca0.28K0.02MnO3 ceramics. Ceramics International, 46(16), 25949-25955. https://doi.org/10.1016/j.ceramint.2020.07.082 DOI: https://doi.org/10.1016/j.ceramint.2020.07.082
M’nassri, R., Selmi, A., Boudjada, N. C., & Cheikhrouhou, A. (2017). Field dependence of magnetocaloric properties of 20% Cr-doped Pr0.7Ca0.3MnO3 perovskite. Journal of Thermal Analysis and Calorimetry, 129, 53-64. https://doi.org/10.1007/s10973-017-6110-1 DOI: https://doi.org/10.1007/s10973-017-6110-1
Malti, A., Kardani, A., & Montazeri, A. (2021). An insight into the temperature-dependent sintering mechanisms of metal nanoparticles through MD-based microstructural analysis. Powder Technology, 386, 30-39. https://doi.org/10.1016/j.powtec.2021.03.037 DOI: https://doi.org/10.1016/j.powtec.2021.03.037
Matheswaran, P., Rajasekhar, M., & Subramania, A. (2017). Assisted combustion synthesis and characterization of Pr0.6Sr0.4MnO3±δ nano crystalline powder as cathode material for IT-SOFC. Ceramics International, 43(1), 988-991. https://doi.org/10.1016/j.ceramint.2016.10.030 DOI: https://doi.org/10.1016/j.ceramint.2016.10.030
Mohamed, Z., Shahron, I. S., Ibrahim, N., & Maulud, M. F. (2020). Influence of ruthenium doping on the crystal structure and magnetic properties of Pr0.67Ba0.33Mn1–xRuxO3 manganites. Crystals, 10(4), 295. https://doi.org/10.3390/cryst10040295 DOI: https://doi.org/10.3390/cryst10040295
Ngida, R. E., Zawrah, M., Khattab, R., & Heikal, E. (2019). Hydrothermal synthesis, sintering and characterization of nano La-manganite perovskite doped with Ca or Sr. Ceramics International, 45(4), 4894-4901. https://doi.org/10.1016/j.ceramint.2018.11.188 DOI: https://doi.org/10.1016/j.ceramint.2018.11.188
Qi, L., Li, Y., Yu, P., Wang, X., Li, Y., Gao, Y., Yang, Y., Wu, D., Zhang, H., & Chen, Q. (2021). Exploring the electrical transport properties of La0.67Ca0.33MnO3 at different sintering temperatures. Journal of Materials Science: Materials in Electronics, 32(11), 14164-14173. https://doi.org/10.1007/s10854-021-05943-1 DOI: https://doi.org/10.1007/s10854-021-05943-1
Rosić, M., Kljaljević, L., Jordanov, D., Stoiljković, M., Kusigerski, V., Spasojević, V., & Matović, B. (2015). Effects of sintering on the structural, microstructural and magnetic properties of nanoparticle manganite Ca1−xGdxMnO3 (x = 0.05, 0.1, 0.15, 0.2). Ceramics International, 41(10), 14964-14972. https://doi.org/10.1016/j.ceramint.2015.08.041 DOI: https://doi.org/10.1016/j.ceramint.2015.08.041
Shogh, S., & Eshraghi, M. (2019). The effect of particle size on the structural, magnetic and electrical properties of La0.9Ba0.1MnO3 manganite samples. Phase Transitions, 92(11), 949-959. https://doi.org/10.1080/01411594.2019.1678036 DOI: https://doi.org/10.1080/01411594.2019.1678036
Taboada-Moreno, C., Sánchez-De Jesús, F., Pedro-García, F., Cortés-Escobedo, C., Betancourt-Cantera, J., Ramírez-Cardona, M., & Bolarín-Miró, A. (2020). Large magnetocaloric effect near to room temperature in Sr doped La0.7Ca0.3MnO3. Journal of Magnetism and Magnetic Materials, 496, 165887. https://doi.org/10.1016/j.jmmm.2019.165887 DOI: https://doi.org/10.1016/j.jmmm.2019.165887
Telegin, A., & Sukhorukov, Y. (2022). Magnetic semiconductors as materials for spintronics. Magnetochemistry, 8(12), 173. https://doi.org/10.3390/magnetochemistry8120173 DOI: https://doi.org/10.3390/magnetochemistry8120173
Ur Rehman, Z., Anwar, M., & Koo, B. H. (2015). Influence of barium doping on the magnetic and magnetocaloric properties of Pr1−xBaxMnO3. Journal of Superconductivity and Novel Magnetism, 28, 1629-1634. https://doi.org/10.1007/s10948-014-2933-1 DOI: https://doi.org/10.1007/s10948-014-2933-1
Wang, Z., Jiang, J., Gu, X., Han, J., Liang, X., Wang, Y., Chen, Z., Wang, H., & Liu, X. (2024). Large temperature coefficient of resistivity (TCR) of La0.67Ca0.33MnO3 polycrystalline ceramics improved by optimizing sintering temperatures. Ceramics International, 50(7), 10160-10170. https://doi.org/10.1016/j.ceramint.2023.12.326 DOI: https://doi.org/10.1016/j.ceramint.2023.12.326
Wu, D., Zhang, H., Li, L., Qi, L., Gao, Y., Yang, Y., & Chen, Q. (2021). Effect of sintering temperature on structure and electrical transport properties of La0.7Ca0.26Na0.04MnO3 ceramics. Ceramics International, 47(9), 12716-12724. https://doi.org/10.1016/j.ceramint.2021.01.131 DOI: https://doi.org/10.1016/j.ceramint.2021.01.131
Xia, W., Pei, Z., Leng, K., & Zhu, X. (2020). Research progress in rare earth-doped perovskite manganite oxide nanostructures. Nanoscale Research Letters, 15, 1-55. https://doi.org/10.1186/s11671-019-3243-0 DOI: https://doi.org/10.1186/s11671-019-3243-0
Zhang, J., Chen, X., Zhang, Q., Han, F., Zhang, J., Zhang, H., Zhang, H., Huang, H., Qi, S., & Yan, X. (2018). Magnetic anisotropy controlled by distinct interfacial lattice distortions at the La1–xSrxCoO3/La2/3Sr1/3MnO3 interfaces. ACS applied materials & interfaces, 10(47), 40951-40957. https://doi.org/10.1021/acsami.8b14981 DOI: https://doi.org/10.1021/acsami.8b14981
License
Copyright (c) 2025 Xiao Tong Hon, Kean Pah Lim, Lik Nguong Lau, Mohd Mustafa Awang Kechik, Soo Kien Chen, Muhammad Kashfi Shabdin, Nurhidayah Mohd Hapipi, Najihah Rohiat, Abdul Halim Shaari

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Journal of Material Science and Radiation, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Journal of Material Science and Radiation.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).


