Influence of Sintering Temperature on Phase Formation and Superconducting Properties of Bi2Sr2CaCu2O8+δ via Thermal Treatment Method

Authors

Rahayu Emilia Mohamed Khaidir , Aliah Nursyahirah Kamarudin , Mohd Mustafa Awang Kechik , Chen Soo Kien , Lim Kean Pah , Muhammad Kashfi Shabdin , Muhammad Khalis Abdul Karim , Aris Doyan , Abdul Halim Shaari

Published:

2025-04-27

Issue:

Vol. 1 No. 1 (2025): April

Keywords:

Bi2Sr2CaCu2O8+δ, Critical temperature, Phase formation, Sintering, Thermal treatment

Articles

Downloads

How to Cite

Khaidir , R. E. M., Kamarudin, A. N., Awang Kechik, M. M., Kien, C. S., Pah, L. K., Shabdin, M. K., … Shaari, A. H. (2025). Influence of Sintering Temperature on Phase Formation and Superconducting Properties of Bi2Sr2CaCu2O8+δ via Thermal Treatment Method. Journal of Material Science and Radiation, 1(1), 1–6. Retrieved from https://journals.balaipublikasi.id/index.php/jmsr/article/view/359

Abstract

High-temperature superconductor Bi2Sr2CaCu2O8+δ (Bi-2212) was successfully prepared using a thermal treatment method, starting with nitrate-based precursors. This study focused on how different sintering temperatures affect the material’s critical temperature, Tc. The process began with a pre-calcination step at 600 °C for 12 hours, followed by calcination at 820 °C for 24 hours. After that, the powder was pressed into pellets and sintered at 830 °C, 840 °C, 850 °C, and 860 °C, each for 24 hours. The Tc-onset values increased with sintering temperature, reaching 50 K at 830 °C, 65 K at 840 °C, and 78 K at 850 °C. SEM images showed closely packed, flake-like grains around 2 μm in size, while XRD analysis confirmed that the sample sintered at 850 °C had the highest Bi-2212 phases as a major phase. Thus, this work outlines the practical steps of the thermal treatment approach and shows how adjusting the sintering temperature can significantly influence the superconducting performance and phase formation of Bi-2212

References

Abdullah, S.N., Kechik, M.M.A., Kamarudin, A.N., Talib, Z.A., Baqiah, H., Kien, C.S., Pah, L.K., Abdul Karim, M.K., Shabdin, M.K., Shaari, A.H., Hashim, A., Suhaimi, N.E., & Miryala, M. (2023). Microstructure and Superconducting Properties of Bi-2223 Synthesized via Co-Precipitation Method: Effects of Graphene Nanoparticle Addition. Nanomaterials, 13(15). http://dx.doi.org/10.3390/nano13152197

Adetokun, B.B., Oghorada, O., & Abubakar, S.J. (2022). Superconducting magnetic energy storage systems: Prospects and challenges for renewable energy applications. Journal of Energy Storage, 55(PC), 105663. https://doi.org/10.1016/j.est.2022.105663

Arlina, A., Halim, S. A., Kechik, M.M.A., & Chen, S.K. (2015). Superconductivity in Bi-Pb-Sr-Ca-Cu-O ceramics with YBCO as additive. Journal of Alloys and Compounds, 645, 269–273. https://doi.org/10.1016/j.jallcom.2015.04.133

Cheng, Y., Zheng, J., Huang, H., & Deng, Z. (2021). A reconstructed three-dimensional HTS bulk electromagnetic model considering J cspatial inhomogeneity and its implementation in a bulks’ combination system. Superconductor Science and Technology, 34(12). http://dx.doi.org/10.1088/1361-6668/ac336b

Darsono, N., Imaduddin, A., & Raju, K. (2015). Synthesis and Characterization of Bi1.6Pb0.4Sr2Ca2Cu3O7 Superconducting Oxide by High-Energy Milling. Journal of Superconductivity and Novel Magnetism. 28(8):1-8 http://dx.doi.org/10.1007/s10948-015-3036-3

Dihom, M.M., Halim, S.A., Baqiah, H., Mohammed Al-Hada, N., Talib, Z.A., Chen, S.K., Azis, R.S., Kechik, M.M.A.,Lim, K.P. & Abd-Shukor, R. (2017). Structural and superconducting properties of Y(Ba1-xKx)2Cu3O7-δ ceramics. Ceramics International, 43(14), 11339–11344. https://doi.org/10.1016/j.ceramint.2017.05.339

Dogruer, M., Aksoy, C., Yildirim, G., Ozturk, O., & Terzioglu, C. (2021). Influence of Sr/Nd partial replacement on fundamental properties of Bi-2223 superconducting system. Journal of Materials Science: Materials in Electronics, 32(6), 7073–7089. http://dx.doi.org/10.1007/s10854-021-05417-4

Dzul-Kifli, N.A.C., Kechik, M.M.A., Baqiah, H., Shaari, A.H., Lim, K.P., Chen, S.K., Sukor, S.I.A., Shabdin, M.K., Karim, M.K.A., Shariff, K.K.M., & Miryala, M. (2022). Superconducting Properties of YBa2Cu3O7−δ with a Multiferroic Addition Synthesized by a Capping Agent-Aided Thermal Treatment Method. Nanomaterials, 12(22). http://dx.doi.org/10.3390/nano12223958

Hapipi, N.M., Chen, S.K., Shaari, A.H., Kechik, M.M.A., Tan, K.B., & Lim, K.P. (2018). Superconductivity of Y2O3 and BaZrO3 nanoparticles co-added YBa2Cu3O7−δ bulks prepared using co-precipitation method. Journal of Materials Science: Materials in Electronics, 29(21), 18684–18692. https://link.springer.com/article/10.1007/s10854-018-9991-2

Kamarudin, A.N., Awang Kechik, M.M., Abdullah, S.N., Baqiah, H., Chen, S.K., Abdul Karim, M.K., Ramli, A., Lim, K.P., Shaari, A.H., Miryala, M., Murakami, M., & Talib, Z.A. (2022). Effect of Graphene Nanoparticles Addition on Superconductivity of YBa2Cu3O7~δ Synthesized via the Thermal Treatment Method. Coatings, 12(1), 91. https://doi.org/10.3390/coatings12010091

Kameli, P., Salamati, H., & Eslami, M. (2006). The effect of sintering temperature on the intergranular properties of Bi2223 superconductors. Solid State Communications, 137(1–2), 30–35. https://doi.org/10.1016/j.ssc.2005.10.026

Kavitha, M., Sarvesh, S., Arshad, M., Surendar, M., & Ragavan, G. (2024). Effect of Ba and Mg Substitution on the Phase Formations of Combustion Synthesized BSCCO Superconductor. Journal of The Institution of Engineers (India): Series D. http://dx.doi.org/10.1007/s40033-023-00634-z

Kechik, M.M.A., Aris, M.F.M., Shaari, A.H., Chen, S.K. and Roslan, A.S. (2008). Addition of Co3O4 to Introduce Pinning Centre in Bi-Sr-Ca-Cu-O/Ag Tapes. Pertanika Journal of Science & Technology, 16, 259–263.

Khalil, S.M., & Sedky, A. (2005). Annealing temperature effect on the properties of Bi:2212 superconducting system. Physica B: Condensed Matter, 357(3–4), 299–304. https://doi.org/10.1016/j.physb.2004.11.080

Maeda, H., Tanaka, Y., Fukutomi, M., & Asano, T. (1993). A New High-T c Oxide Superconductor without a Rare Earth Element. Physica C: Superconductivity. 209, 303–304. https://doi.org/10.1016/0921-4534(88)90727-7

Matsushita, T., Kiuchi, M., Nishijima, G., Masuda, T., Mukoyama, S., Aoki, Y., & Nakai, A. (2021). Round Robin Test of Critical Current of Superconducting Cable. IEEE Transactions on Applied Superconductivity, 31(5), 26–29. http://dx.doi.org/10.1109/TASC.2021.3058232

Sekkina, M.M.A., & Elsabawy, K.M. (2002). Sr-doping for promoted high-Tc BPSCCO superconductors. Physica C: Superconductivity and Its Applications, 377(3), 254–259. https://doi.org/10.1016/S0921-4534(02)01250-9

Sharma, D., Kumar, R., & Awana, V.P.S. (2013). DC and AC susceptibility study of sol-gel synthesized Bi2Sr2CaCu2O8+δ superconductor. Ceramics International, 39(2), 1143–1152. https://doi.org/10.1016/j.ceramint.2012.07.038

Siregar, D.R.D.K., Yudanto, S.D., Chandra, S.A., Lubis, E.F.R., Humaidi, S., & Darsono, N. (2021). Improvement of the superconducting properties of carbon addition on Bi1.6Pb0.4Sr2Ca2Cu3O10+δ prepared through the two-step sintering process. Journal of Metals, Materials and Minerals, 31(4), 76–81. http://dx.doi.org/10.14456/jmmm.2021.60

Sugawara, K., Sugimoto, C., Luo, T., Kawamata, T., Noji, T., Kato, M., & Koike, Y. (2018). Superconductivity above 100 K in the Bi-2212 phase of (Bi,Pb)2Sr2CaCu2O8. Journal of Physics: Conference Series, 1054(1).

Sukor, S.I.A., Kechik, M.M.A., Kamarudin, A.N., Shaari, A.H., Kien, C.S., Pah, L.K., Shariff, K.K.M., Shabdin, M.K., Yaakob, Y., Karim, M.K.A., & Doyan, A. (2024). Influence of Carbon Nanotubes in Improving the Superconducting and Structural Properties of Bulk Bi-2212 Synthesis by Thermal Treatment Method. AMPLITUDO : Journal of Science and Technology Innovation, 3(2), 117–122. http://dx.doi.org/10.56566/amplitudo.v3i2.224

Tsukamoto, T., Triscone, G., Genoud, J.Y., Wang, K.Q., Janod, E., Junod, A., & Muller, J. (1994). Preparation and superconducting properties of high-quality Bi-2212 ceramics. Journal of Alloys and Compounds, 209(1–2), 225–229. https://doi.org/10.1016/0925-8388(94)91103-7

Zahari, R.M., Shaari, A.H., Abbas, Z., Baqiah, H., Chen, S.K., Lim, K.P., & Kechik, M.M.A. (2017). Simple preparation and characterization of bismuth ferrites nanoparticles by thermal treatment method. Journal of Materials Science: Materials in Electronics, 28(23), 17932–17938. https://link.springer.com/article/10.1007/s10854-017-7735-3

Zhai, Y., Otto, A., & Zarnstorff, M. (2022). Low cost, simpler HTS cable conductors for fusion energy systems. IOP Conference Series: Materials Science and Engineering, 1241(1), 012023. http://dx.doi.org/10.1088/1757-899X/1241/1/012023

Author Biographies

Rahayu Emilia Mohamed Khaidir , Universiti Putra Malaysia

Aliah Nursyahirah Kamarudin, Universiti Putra Malaysia

Mohd Mustafa Awang Kechik, Universiti Putra Malaysia

Chen Soo Kien, Universiti Putra Malaysia

Lim Kean Pah, Universiti Putra Malaysia

Muhammad Kashfi Shabdin, Universiti Putra Malaysia

Muhammad Khalis Abdul Karim, Universiti Putra Malaysia

Aris Doyan, University of Mataram

Abdul Halim Shaari, Universiti Putra Malaysia

License

Copyright (c) 2025 Rahayu Emilia Mohamed Khaidir , Aliah Nursyahirah Kamarudin, Mohd Mustafa Awang Kechik, Chen Soo Kien, Lim Kean Pah, Muhammad Kashfi Shabdin, Muhammad Khalis Abdul Karim, Aris Doyan, Abdul Halim Shaari

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Journal of Material Science and Radiation, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Journal of Material Science and Radiation.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).