Effect of Sintering Temperature on the Phase Formation and Superconducting Properties of Bi1.6Pb0.4Sr2Ca2Cu3O10 Ceramics Synthesised via Co-Precipitation
Published:
2025-08-31Downloads
Abstract
In this work, (Bi, Pb)-2223 superconducting ceramics with the nominal composition Bi1.6Pb0.4Sr2Ca2Cu3O10 were synthesised via the co-precipitation method and sintered at temperatures of 845 °C, 850 °C, and 855 °C. X-ray diffraction (XRD) analysis confirmed the dominance of Bi1.6Pb0.4Sr2Ca2Cu3O10 phase with minor traces of secondary phases, Ca2PbO4 (dicalcium lead (IV) oxide). An increase in sintering temperature led to a larger average grain size and reduced intergranular voids. Electrical resistivity measurements using the four-point probe method revealed the highest superconducting transition temperature (Tc onset = 104 K) for samples sintered at 845 °C. Higher sintering temperatures reduced the value of Tc onset and resulted in a wider transition width, ΔTc. These findings highlight the critical influence of sintering temperature on the structural and microstructural properties, which in turn govern the superconducting performance of (Bi, Pb)-2223 ceramics.
Keywords:
BSCCO-2223, Co-precipitation, Sintering, Superconducting, TemperatureReferences
Abdullah, S. N., Kechik, M. M. A., Kamarudin, A. N., Talib, Z. A., Baqiah, H., Kien, C. S., Pah, L. K., Abdul Karim, M. K., Shabdin, M. K., Shaari, A. H., Hashim, A., Suhaimi, N. E., & Miryala, M. (2023). Microstructure and Superconducting Properties of Bi-2223 Synthesized via Co-Precipitation Method: Effects of Graphene Nanoparticle Addition. Nanomaterials, 13(15). https://doi.org/10.3390/nano13152197
Abou-Aly, A. I., Awad, R., Mahmoud, S. A., & Barakat, M. M. (2011). EPR studies of (Bi, Pb)-2223 phase substituted by Ruthenium ions. Journal of Alloys and Compounds, 509, 7381–7388. https://doi.org/10.1016/j.jallcom.2011.03.160
Çetin, Y., & Gündoğmuş, H. (2024). Investigation of BSCCO superconductors with Ga substitution by solid state method. Cumhuriyet Science Journal, 45(2), 407–413. https://doi.org/10.17776/csj.1429356
Fallah-Arani, H., Baghshahi, S., Sedghi, A., Stornaiuolo, D., Tafuri, F., Massarotti, D., & Riahi-Noori, N. (2017). The influence of heat treatment on the microstructure, flux pinning and magnetic properties of bulk BSCCO samples prepared by sol-gel route. Ceramics International, 44(5), 5209–5218. https://doi.org/10.1016/j.ceramint.2017.12.128
Hamadneh, I., Halim, S. A., & Lee, C. K. (2006). Characterization of Bi1.6Pb0.4Sr2Ca2Cu3Oy ceramic superconductor prepared via coprecipitation method at different sintering time. Journal of Materials Science, 41, 5526–5530. https://doi.org/10.1007/s10853-006-0277-3
Hamadneh, I., Rosli, A. M., Abd-Shukor, R., Suib, N. R. M., & Yahya, S. Y. (2008). Superconductivity of REBa2Cu3O7-δ (RE= Y, Dy, Er) ceramic synthesized via coprecipitation method. Journal of Physics: Conference Series, 97, 12063. https://doi.org/10.1088/1742-6596/97/1/012063
Hapipi, N. M., Chen, S. K., Shaari, A. H., Kechik, M. M. A., Tan, K. B., & Lim, K. P. (2018). Superconductivity of Y2O3 and BaZrO3 nanoparticles co-added YBa2Cu3O7−δ bulks prepared using co-precipitation method. Journal of Materials Science: Materials in Electronics, 29, 18684–18692. https://doi.org/10.1007/s10854-018-9991-2
Hapipi, N. M., Lim, J. K., Chen, S. K., Lee, O. J., Shaari, A. H., Kechik, M. M. A., Lim, K. P., Tan, K. B., Murakami, M., & Miryala, M. (2019). Comparative study on ac susceptibility of YBa2Cu3O7−δ added with BaZrO3 nanoparticles prepared via solid-state and co-precipitation method. Crystals, 9, 1–12. https://doi.org/10.3390/cryst9100497
Hapipi, N. M., Shaari, A. H., Kechik, M. M. A., Tan, K. B., Abd-Shukor, R., Mohd Suib, N. R., & Chen, S. K. (2017). Effect of heat treatment condition on the phase formation of YBa2Cu3O7-δ superconductor. Solid State Phenom, 268, 305–310. Retrieved from https://www.scientific.net/ssp.268.305
Hsueh, Y. W., Chang, S. C., Liu, R. S., Woodall, L., & Gerards, M. (2001). A comparison of the properties of Bi-2223 precursor powders synthesized by various methods. Materials Research Bulletin, 36, 1653–1658. https://doi.org/10.1016/S0025-5408(01)00647-X
Hull, J. R. (2003). Applications of high-temperature superconductors in power technology. Reports on Progress in Physics, 66, 1865–1886. https://doi.org/10.1088/0034-4885/66/11/R01
Janowski, T., Stryczewska, H. D., Kozak, S., Kondratowicz-Kucewicz, B., Wojtasiewicz, G., Kozak, J., Surdacki, P., & Malinowski, H. (2004). Bi-2223 and Bi-2212 tubes for small fault current limiters. IEEE transactions on applied superconductivity, 14, 851–854. https://doi.org/10.1109/TASC.2004.830298
Jeremie, A., Grasso, G., & Flükiger, R. (1997). Synthesis and characterization of high temperature superconductors: System Bi-Pb-Sr-Ca-Cu-O. Journal of Thermal Analysis, 48, 3. https://doi.org/10.1007/BF01979509
Kameli, P., Salamati, H., & Eslami, M. (2006). The effect of sintering temperature on the intergranular properties of Bi2223 superconductors. Solid State Commun, 137(1–2), 30–35. https://doi.org/10.1016/j.ssc.2005.10.026
Kikuchi, M., Ayai, N., Ishida, T., Tatamidani, K., Hayashi, K., Kobayashi, S., Ueno, E., Yamazaki, K., Yamade, S., Takaaze, H., Fujikami, J., & Sato, K. I. (2008). Development of new types of DI-BSCCO wire. SEI TECHNICAL REVIEW-ENGLISH EDITION, 66, 73–80. Retrieved from https://global-sei.com/technology/tr/bn66/pdf/66-09.pdf
Lei, Z., Yao, C., Guo, W., Wang, D., & Ma, Y. (2023). Progress on the fabrication of superconducting wires and tapes via hot isostatic pressing. Materials, 16, 1786. https://doi.org/10.3390/ma16051786
Lojka, M., Antoncik, F., Sedmidubsky, D., Hlasek, T., Wild, J., Pavlu, J., Jankovsky, O., & Bartunek, V. (2020). Phase-stable segmentation of BSCCO high-temperature superconductor into micro-, meso-, and nano-size fractions. Journal of Materials Research and Technology, 9, 12071–12079. https://doi.org/10.1016/j.jmrt.2020.08.107
Mohammed, N. H., Awad, R., Abou-Aly, A. I., Ibrahim, I. H., & Hassan, M. S. (2012). Optimizing the preparation conditions of Bi-2223 superconducting phase using PbO and PbO2. Materials Sciences and Applications, 3, 224–233. https://doi.org/10.4236/msa.2012.34033
Mohiju, Z. A., Mujaini, M., & Hamid, N. A. (2022). Superconducting properties of (Bi, Pb)2Sr2Ca2Cu3Ox (BSCCO-2223) superconductor ceramics prepared by conventional solid-state reaction and co-precipitation methods. IOP Conference Series: Materials Science and Engineering, 1231(1). https://doi.org/10.1088/1757-899X/1231/1/012009
Ochsenkühn-Petropulu, M., Tarantilis, P., Argyropulu, R., & Parissakis, G. (1998). Optimization of the sintering process by DSC for the preparation of high-temperature superconductors. J. Therm. Anal, 52, 903–914. https://doi.org/10.1023/A:1010159918410
Popa, M., Totovkg, A., Popescu, L., & Zaharesc, M. (1998). Reactivity of the Bi, Sr, Ca, Cu oxalate powders used in BSCCO preparation. Journal of the European Ceramic Society, 18, 1265–1271. https://doi.org/10.1016/S0955-2219(98)00052-1
Shimoyama, J., & Motoki, T. (2024). Current status of high temperature superconducting materials and their various applications. IEEJ Transactions on Electrical and Electronic Engineering, 19, 292–304. https://doi.org/10.1002/tee.23976
William, J., Callister, D., & Rethwisch, D. G. (2009). Materials science and engineering: an introduction. John Wiley & Sons, Inc.
License
Copyright (c) 2025 Nurhidayah Mohd Hapipi, Soo Kien Chen, Mohd Mustafa Awang Kechik, Kean Pah Lim, Abdul Halim Shaari, Nor Atikah Baharuddin, Nurul Auni Khalid, Muhammad Kashfi Shabdin, Kar Ban Tan, Oon Jew Lee

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Journal of Material Science and Radiation, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Journal of Material Science and Radiation.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).



