Comparative Study of Y123 Superconductors Synthesized Under Open Air and Oxygen Flow Conditions
DOI:
10.56566/jmsr.v1i3.426Downloads
Abstract
YBa₂Cu₃O₇₋δ (Y123) superconductors is a widely studied high-temperature superconductor due to its high critical temperature, Tc and strong flux pinning properties. In this study, Y123 samples were synthesized via a thermal treatment method under two sintering conditions which were open air and oxygen flow. Structural, microstructural, and superconducting properties were evaluated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and AC susceptibility measurements. XRD analysis revealed that all Y123 samples exhibited predominantly Y123 phase with orthorhombic structure, with minor secondary phases. The Y123 sample prepared in an open-air condition exhibited larger grain size (0.698 µm), lower porosity, and fewer impurities compared to sample prepared in the oxygen flow condition. AC susceptibility showed a higher Tc-onset exhibited at 92.1 K in the open-air sample, indicating better grain connectivity. These results suggest that open-air sintering offers a simpler, cost-effective route for enhancing Y123 superconductor performance.
Keywords:
Critical temperature Thermal treatment Microstructure Tc-onset Y123References
Abdullah, S. N., Kechik, M. M. A., Kamarudin, A. N., Talib, Z. A., Baqiah, H., Kien, C. S., Pah, L. K., Abdul Karim, M. K., Shabdin, M. K., Shaari, A. H., Hashim, A., Suhaimi, N. E., & Miryala, M. (2023). Microstructure and Superconducting Properties of Bi-2223 Synthesized via Co-Precipitation Method: Effects of Graphene Nanoparticle Addition. Nanomaterials, 13(15). https://doi.org/10.3390/nano13152197 DOI: https://doi.org/10.3390/nano13152197
Benzi, P., Bottizzo, E., & Rizzi, N. (2004). Oxygen determination from cell dimensions in YBCO superconductors. 269, 625–629. https://doi.org/10.1016/j.jcrysgro.2004.05.082 DOI: https://doi.org/10.1016/j.jcrysgro.2004.05.082
Cava, R. J., Hewat, A. W., Hewat, E. A., Batlogg, B., Marezio, M., Rabe, K. M., Krajewski, J. J., Peck, W. F., & Rupp, L. W. (1990). Structural anomalies, oxygen ordering and superconductivity in oxygen deficient Ba2YCu3Ox. Physica C: Superconductivity and Its Applications, 165(5–6), 419–433. https://doi.org/10.1016/0921-4534(90)90376-P DOI: https://doi.org/10.1016/0921-4534(90)90376-P
Dadras, S., Dehghani, S., Davoudiniya, M., & Falahati, S. (2017). Improving superconducting properties of YBCO high temperature superconductor by Graphene Oxide doping. Materials Chemistry and Physics, 193, 496–500. https://doi.org/10.1016/j.matchemphys.2017.03.003 DOI: https://doi.org/10.1016/j.matchemphys.2017.03.003
Dihom, M. M., Shaari, A. H., Baqiah, H., Al-hada, N. M., Abidin, Z., Soo, C., Syahidah, R., Mustafa, M., Kechik, A., Kean, L., & Abd-shukor, R. (2017). Structural and superconducting properties of Y ( Ba 1- x K x ) 2 Cu 3 O 7- δ ceramics. Ceramics International, 43(14), 11339–11344. https://doi.org/10.1016/j.ceramint.2017.05.339 DOI: https://doi.org/10.1016/j.ceramint.2017.05.339
Dihom, M. M., Shaari, A. H., Baqiah, H., Al-Hada, N. M., Kean, C. S., Azis, R. S., Kechik, M. M. A., & Abd-Shukor, R. (2017). Effects of calcination temperature on microstructure and superconducting properties of Y123 ceramic prepared using thermal treatment method. Solid State Phenomena, 268 SSP, 325–329. https://doi.org/10.4028/www.scientific.net/SSP.268.325 DOI: https://doi.org/10.4028/www.scientific.net/SSP.268.325
Dihom, M. M., Shaari, A. H., Baqiah, H., Al-Hada, N. M., Kien, C. S., Azis, R. S., Kechik, M. M. A., Talib, Z. A., & Abd-Shukor, R. (2017). Microstructure and superconducting properties of Ca substituted Y(Ba1−xCax)2Cu3O7−δ ceramics prepared by thermal treatment method. Results in Physics, 7, 407–412. https://doi.org/10.1016/j.rinp.2016.11.067 DOI: https://doi.org/10.1016/j.rinp.2016.11.067
Diko, P., Kaňuchov́, M., Chaud, X., Odier, P., Granados, X., & Obradors, X. (2008). Oxygenation mechanism of TSMG YBCO bulk superconductor. Journal of Physics: Conference Series, 97(1). https://doi.org/10.1088/1742-6596/97/1/012160 DOI: https://doi.org/10.1088/1742-6596/97/1/012160
Hannachi, E., Mahmoud, K. A., Sayyed, M. I., & Slimani, Y. (2022). Effect of sintering conditions on the radiation shielding characteristics of YBCO superconducting ceramics. Journal of Physics and Chemistry of Solids, 164(January), 110627. https://doi.org/10.1016/j.jpcs.2022.110627 DOI: https://doi.org/10.1016/j.jpcs.2022.110627
Howe, B. A. (2014). Cornerstone : A Collection of Scholarly and Creative Works for Minnesota Crystal Structure and Superconductivity of YBa2Cu3O7-x Crystal Structure and Superconductivity. Thesis, 69.
Kamarudin, A. N., Awang Kechik, M. M., Abdullah, S. N., Baqiah, H., Chen, S. K., Abdul Karim, M. K., Ramli, A., Lim, K. P., Shaari, A. H., Miryala, M., Murakami, M., & Talib, Z. A. (2022). Effect of Graphene Nanoparticles Addition on Superconductivity of YBa2Cu3O7~δ Synthesized via the Thermal Treatment Method. Coatings, 12(1), 91. https://doi.org/10.3390/coatings12010091 DOI: https://doi.org/10.3390/coatings12010091
Kamarudin, A. N., Muralidhar, M., Kechik, M. M. A., Chen, S. K., Lim, K. P., Harun, M. H., Shabdin, M. K., Karim, M. K. A., & Shaari, A. H. (2025). Elucidating of Er211 performance in (Y,Er)Ba2Cu3Oy single-grain bulk superconductors by infiltration growth process. Physica B: Condensed Matter, 706, 417152. https://doi.org/10.1016/j.physb.2025.417152 DOI: https://doi.org/10.1016/j.physb.2025.417152
Konstantinov, K., Devos, P., Chen, H., Servaes, F., Cornelis, J., De Batist, R., Souleva, A., & Jankova, D. (1996). The effects of Cs addition and different sintering conditions on YBCO-123 superconductors made from precursor or commercial 123 powder. Journal of Materials Science, 31(11), 2987–2996. https://doi.org/10.1007/BF00356013 DOI: https://doi.org/10.1007/BF00356013
Liu, S., Xia, D., Qiu, Q., Zhang, Z., Wang, H., & Liu, Q. (2018). Recovery characteristics of YBCO tapes against DC over current impulse. Physica C: Superconductivity and Its Applications, 551(April), 1–4. https://doi.org/10.1016/j.physc.2018.05.001 DOI: https://doi.org/10.1016/j.physc.2018.05.001
Masuda, T., Yumura, H., Watanabe, M., Takigawa, H., Ashibe, Y., Suzawa, C., Kato, T., Okura, K., Yamada, Y., Hirose, M., Yatsuka, K., Sato, K., & Isojima, S. (2005). High-temperature superconducting cable technology and development trends. SEI Technical Review, 59, 8–13.
Mukoyama, S., Yagi, M., Hirano, N., Amemiya, N., Kashima, N., Nagaya, S., Izumi, T., & Shiohara, Y. (2007). Study of an YBCO HTS transmission cable system. Physica C: Superconductivity and Its Applications, 463–465(SUPPL.), 1150–1153. https://doi.org/10.1016/j.physc.2007.03.452 DOI: https://doi.org/10.1016/j.physc.2007.03.452
Pathak, L. C., Mishra, S. K., Das, S. K., Bhattacharya, D., & Chopra, K. L. (2001). Effect of sintering atmosphere on the weak-link behaviour of YBCO superconductors. Physica C: Superconductivity and Its Applications, 351(3), 295–300. https://doi.org/10.1016/S0921-4534(00)01628-2 DOI: https://doi.org/10.1016/S0921-4534(00)01628-2
Ramli, A., Shaari, A. H., Baqiah, H., Kean, C. S., Kechik, M. M. A., & Talib, Z. A. (2016). Role of Nd2O3nanoparticles addition on microstructural and superconducting properties of YBa2Cu3O7-δceramics. Journal of Rare Earths, 34(9), 895–900. https://doi.org/10.1016/S1002-0721(16)60112-6 DOI: https://doi.org/10.1016/S1002-0721(16)60112-6
Sah, N. A. M. I. A., Kechik, M. M. A., Kien, C. S., Pah, L. K., Shaari, A. H., Shabdin, M. K., Karim, M. K. A., Miryala, M., Baqiah, H., Shariff, K. K. M., Hong, Y. S., & Mohamed, A. R. A. (2024). Comparative studies of pure YBa2Cu3O7-ẟ prepared by modified thermal decomposition method against thermal treatment method. Applied Physics A: Materials Science and Processing, 130(5). https://doi.org/10.1007/s00339-024-07412-y DOI: https://doi.org/10.1007/s00339-024-07412-y
Sahoo, B., Routray, K. L., Samal, D., & Behera, D. (2019). Effect of artificial pinning centers on YBCO high temperature superconductor through substitution of graphene nano-platelets. Materials Chemistry and Physics, 223(October 2018), 784–788. https://doi.org/10.1016/J.MATCHEMPHYS.2018.11.048 DOI: https://doi.org/10.1016/j.matchemphys.2018.11.048
Sheahen, T. P. (1994). Introduction to High temperature superconductivity. In Kluwer Academic Publishers (Issue 2). https://doi.org/10.1887/0750308982/b447v1c60 DOI: https://doi.org/10.1887/0750308982/b447v1c60
Veneva, A., Iordanov, I., Toshev, L., Stoyanova-Ivanova, A., & Gogova, D. (1998). A study of the effect of KClO3 addition on the AC susceptibility and micro structure of high-temperature (Tconset at 105 K) YBCO ceramic superconductors. Physica C: Superconductivity and Its Applications, 308(3–4), 175–184. https://doi.org/10.1016/S0921-4534(98)00344-X DOI: https://doi.org/10.1016/S0921-4534(98)00344-X
Wang, Y., Zhang, Z., Gao, Z., Wang, L., & Wang, Q. (2025). Effect of oxygen partial pressure on the preparation of phase-pure YbBa2Cu3O7-y superconductor by solid-state sintering method. Journal of the European Ceramic Society, 45(10), 117325. https://doi.org/10.1016/j.jeurceramsoc.2025.117325 DOI: https://doi.org/10.1016/j.jeurceramsoc.2025.117325
Wu, M. K., Ashburn, J. R., Torng, C. J., Hor, P. H., Meng, R. L., Gao, L., Huang, Z. J., Wang, Y. Q., & Chu, C. W. (1987). Superconductivity at 93 K in a new mixed-phase Yb-Ba-Cu-O compound system at ambient pressure. Physical Review Letters, 58(9), 908–910. https://doi.org/10.1103/PhysRevLett.58.908 DOI: https://doi.org/10.1103/PhysRevLett.58.908
Yildizer, I., Cansiz, A., & Ozturk, K. (2016). Optimization of levitation and guidance forces in a superconducting Maglev system. Cryogenics, 78, 57–65. https://doi.org/10.1016/j.cryogenics.2016.06.007 DOI: https://doi.org/10.1016/j.cryogenics.2016.06.007
Zahari, R. M., Shaari, A. H., Abbas, Z., Baqiah, H., Chen, S. K., Lim, K. P., & Kechik, M. M. A. (2017). Simple preparation and characterization of bismuth ferrites nanoparticles by thermal treatment method. Journal of Materials Science: Materials in Electronics, 28(23), 17932–17938. https://doi.org/10.1007/s10854-017-7735-3 DOI: https://doi.org/10.1007/s10854-017-7735-3
License
Copyright (c) 2025 Aliah Nursyahirah Kamarudin, Mohd Mustafa Awang Kechik, Muhammad Azri Khairudin, Chen Soo Kien, Lim Kean Pah, Muhammad Kashfi Shabdin, Abdul Halim Shaari, Aris Doyan

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Journal of Material Science and Radiation, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Journal of Material Science and Radiation.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).


