Effect of SnO2 Addition on YBCO Superconducting Properties through Thermal Treatment Method
Published:
2025-04-27Issue:
Vol. 1 No. 1 (2025): AprilKeywords:
Microstructural, SnO2, Superconducting, Thermal treatment, YBCOArticles
Downloads
How to Cite
Abstract
In this study, YBa2Cu3O7-δ (YBCO) superconductors were synthesized using a thermal treatment method with the addition of 1.0 wt. % SnO₂. The synthesis of YBCO employed nitrate-based precursors and polyvinylpyrrolidone (PVP) as a capping agent to enhance homogeneity during the synthesis process. All samples were characterized using thermogravimetric analysis (TGA), X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Four-point probe (4PP). TGA results of the pure YBCO sample confirmed the complete transformation of nitrate-based precursors into oxide forms prior to the formation of the YBCO phase. XRD pattern revealed that Y123 as a major phase and Y124 as a minor phase in all samples with orthorhombic crystal structure were preserved. However, the peak intensity of the Y123 was pronounced with the addition of the SnO2 sample, suggesting the enhancement phase formation due to the presence of SnO₂. The electrical resistivity measures revealed a sharp superconducting transition in all samples. However, the reduction in superconducting transition temperatures for the SnO2 addition were observed where the Tc-onset decreased from 91.70 K to 89.25 K for the YBCO and YBCO + 1.0 wt.% of SnO2, respectively. This also exhibited the broadening of transition width, ΔTc indicating the suppression of superconducting properties with SnO₂ inclusion. SEM analysis showed notable differences in microstructure. The pure YBCO sample exhibited a larger average grain size of 1.32 µm, while the YBCO + 1.0 wt. % SnO2 sample formed small and rounded grains with smoother edges, potentially impacting intergranular connectivity and charge transport. Therefore, the addition of 1.0 wt. % SnO2 to YBCO enhanced the formation of the Y123 phase but adversely affected the superconducting transition temperature and microstructural features. These findings highlight the dual role of SnO2 in promoting phase purity while modifying grain morphology and electrical performance, offering insight into the optimization of dopants in high-temperature superconductors
References
Abdullah, S. N., Kechik, M. M. A., Kamarudin, A. N., Talib, Z. A., Baqiah, H., Kien, C. S., Pah, L. K., Abdul Karim, M. K., Shabdin, M. K., Shaari, A. H., Hashim, A., Suhaimi, N. E., & Miryala, M. (2023). Microstructure and Superconducting Properties of Bi-2223 Synthesized via Co-Precipitation Method: Effects of Graphene Nanoparticle Addition. Nanomaterials, 13(15). https://doi.org/10.3390/nano13152197
Alecu, G. (2004). Crystal Structures of Some High-Temperature Superconductors. Romanian Reports in Physiscs, 56(3), 404–412. Retrieved from https://shorturl.asia/5Vjbq
Azeez, N. (2016). Thermogravimetric Analysis on PVA/PVP Blend Under Air Atmosphere. Engineering and Technology Journal, 34(13), 2433–2441. https://doi.org/10.30684/etj.34.13A.6
Bardwell, C. J., Bickley, R. I., Poulston, S., & Twigg, M. V. (2015). Thermal decomposition of bulk and supported barium nitrate. Thermochimica Acta, 613(3), 94–99. https://doi.org/10.1016/j.tca.2015.05.013
Dadras, S., & Gharehgazloo, Z. (2016). Effect of Au nano-particles doping on polycrystalline YBCO high temperature superconductor. Physica B: Physics of Condensed Matter, 492, 45–49. https://doi.org/10.1016/j.physb.2016.04.005
Dihom, M. M., Shaari, A. H., Baqiah, H., Al-Hada, N. M., Kean, C. S., Azis, R. S., Kechik, M. M. A., & Abd-Shukor, R. (2017). Effects of calcination temperature on microstructure and superconducting properties of Y123 ceramic prepared using thermal treatment method. Solid State Phenomena, 268 SSP, 325–329. Retrieved from https://www.scientific.net/SSP.268.325
Dihom, M. M., Shaari, A. H., Baqiah, H., Al-Hada, N. M., Kien, C. S., Azis, R. S., Kechik, M. M. A., Talib, Z. A., & Abd-Shukor, R. (2017). Microstructure and superconducting properties of Ca substituted Y(Ba1−xCax)2Cu3O7−δ ceramics prepared by thermal treatment method. Results in Physics, 7, 407–412. https://doi.org/10.1016/j.rinp.2016.11.067
Hor, P. H., Gao, L., Meng, R. L., Huang, Z. J., Wang, Y. Q., Forster, K., Vassilious, J., Chu, C. W., Wu, M. K., Ashburn, J. R., & Torng, C. J. (1987). High-pressure study of the new Y-Ba-Cu-O superconducting compound system. Physical Review Journals, 58(9), 911–912. https://doi.org/10.1103/PhysRevLett.58.911
Howe, B. A. (2014). Crystal Structure and Superconductivity of YBa2Cu3O 7–x. Mankato: Minnesota State University.
Jasim, S. E., Jusoh, M. A., Hafiz, M., & Jose, R. (2016). Fabrication of Superconducting YBCO Nanoparticles by Electrospinning. Procedia Engineering, 148, 243–248. https://doi.org/10.1016/j.proeng.2016.06.595
Kamarudin, A. N., Awang Kechik, M. M., Abdullah, S. N., Baqiah, H., Chen, S. K., Abdul Karim, M. K., Ramli, A., Lim, K. P., Shaari, A. H., Miryala, M., Murakami, M., & Talib, Z. A. (2022). Effect of Graphene Nanoparticles Addition on Superconductivity of YBa2Cu3O7~δ Synthesized via the Thermal Treatment Method. Coatings, 12(1), 91. https://doi.org/10.3390/coatings12010091
Kamarudin, A. N., Muralidhar, M., Kechik, M. M. A., Chen, S. K., Lim, K. P., Harun, M. H., Shabdin, M. K., Karim, M. K. A., & Shaari, A. H. (2025). Elucidating of Er211 performance in (Y,Er)Ba2Cu3Oy single-grain bulk superconductors by infiltration growth process. Physica B: Condensed Matter, 706, 417152. https://doi.org/10.1016/j.physb.2025.417152
Kechik, M. M. A., Mikheenko, P., Sarkar, A., Dang, V. S., Hari Babu, N., Cardwell, D. A., Abell, J. S., & Crisan, A. (2009). Artificial pinning centres in YBa 2 Cu 3 O 7−δ thin films by Gd 2 Ba 4 CuWO y nanophase inclusions. Superconductor Science and Technology, 22(3), 034020. https://doi.org/10.1088/0953-2048/22/3/034020
Khalid, N. A., Kechik, M. M. A., Baharuddin, N. A., Kien, C. S., Baqiah, H., Yusuf, N. N. M., Shaari, A. H., Hashim, A., & Talib, Z. A. (2018). Impact of carbon nanotubes addition on transport and superconducting properties of YBa2Cu3O7−δ ceramics. Ceramics International, 44(8), 9568–9573. https://doi.org/10.1016/j.ceramint.2018.02.178
Melnikov, P., Nascimento, V. A., Consolo, L. Z. Z., & Silva, A. F. (2013). Mechanism of thermal decomposition of yttrium nitrate hexahydrate, Y(NO3)3·6H2O and modeling of intermediate oxynitrates. Journal of Thermal Analysis and Calorimetry, 111(1), 115–119. https://doi.org/10.1007/s10973-012-2236-3
Metin, T., & Tepe, M. (2017). The Effect of Ag Doping on the Superconducting Properties of Y3Ba5Cu8−xAgxO18−δ Ceramics. Journal of Superconductivity and Novel Magnetism, 30(4), 1083–1087. https://doi.org/10.1007/s10948-016-3768-8
Mohamed, A. R. A., Awang Kechik, M. M., Chen, S. K., Lim, K. P., Baqiah, H., Shariff, K. K. M., Yap, S. H., Hoo, K. P., Shaari, A. H., Humaidi, S., & Muralidhar, M. (2024). Enhancing superconducting properties of YBa2Cu3O7‑ ẟ through Nd2O3 addition prepared using modified thermal decomposition method. Applied Physics A: Materials Science and Processing, 130(12), 897. https://doi.org/10.1557/proc-275-49
Orlova, T. S., & Laval, J. Y. (2017). Microstructure and superconducting properties of the DyBaCuO ceramic doped with Na2CO3, NaCl, and KClO3. Physics of the Solid State, 49(11), 2058–2064. https://doi.org/10.1134/S1063783407110078
Paranthaman, M. P., & Izumi, T. (2004). High-performance YBCO-coated superconductor wires. MRS Bulletin, 29(8), 533–537. https://doi.org/10.1557/mrs2004.159
Pathak, L. C., Mishra, S. K., Das, S. K., Bhattacharya, D., & Chopra, K. L. (2001). Effect of sintering atmosphere on the weak-link behaviour of YBCO superconductors. Physica C: Superconductivity and Its Applications, 351(3), 295–300. https://doi.org/10.1016/S0921-4534(00)01628-2
Sheahen, T. P. (1994). Introduction to High temperature superconductivity. Springer Science & Business Media.
Wu, M. K., Ashburn, J. R., Torng, C. J., Hor, P. H., Meng, R. L., Gao, L., Huang, Z. J., Wang, Y. Q., & Chu, C. W. (1987). Superconductivity at 93 K in a new mixed-phase Yb-Ba-Cu-O compound system at ambient pressure. Physical Review Letters, 58(9), 908–910. https://doi.org/10.1103/PhysRevLett.58.908
Yao, C., & Ma, Y. (2021). Superconducting materials: Challenges and opportunities for large-scale applications. IScience, 24(6), 102541. https://doi.org/10.1016/j.isci.2021.102541
Yap, S. H., Kechik, M. M. A., Shariff, K. K. M., Baqiah, H., Chen, S. K., Lim, K. P., Shabdin, M. K., Zaid, M. H. M., Yaakob, Y., Karim, M. K. A., Humaidi, S., Shaari, A. H., & Miryala, M. (2024). Fluctuation induces conductivity and microstructural studies in Y-123: Effect of CaO inclusion. Journal of Alloys and Compounds, 1005(August), 175955. https://doi.org/10.1016/j.jallcom.2024.175955
Yusuf, N. N. M., Kechik, M. M. A., Baqiah, H., Kien, C. S., Pah, L. K., Shaari, A. H., Jusoh, W. N. W. W., Sukor, S. I. A., Dihom, M. M., Talib, Z. A., & Abd-Shukor, R. (2019). Structural and superconducting properties of thermal treatment-synthesised bulk YBa2Cu3O7-δ superconductor: Effect of addition of SnO2 nanoparticles. Materials, 12(1), 6–15. https://doi.org/10.3390/ma12010092
Zahari, R. M., Shaari, A. H., Abbas, Z., Baqiah, H., Chen, S. K., Lim, K. P., & Kechik, M. M. A. (2017). Simple preparation and characterization of bismuth ferrites nanoparticles by thermal treatment method. Journal of Materials Science: Materials in Electronics, 28(23), 17932–17938. https://doi.org/10.1007/s10854-017-7735-3
Author Biographies
Aliah Nursyahirah Kamarudin, Universiti Putra Malaysia
Tan Kar Yeow, Universiti Putra Malaysia
Mohd Mustafa Awang Kechik, Universiti Putra Malaysia
Chen Soo Kien, Universiti Putra Malaysia
Lim Kean Pah, Universiti Putra Malaysia
Muhammad Kashfi Shabdin, University of Mataram
Nurhidayah Mohd Hapipi, Universiti Putra Malaysia
Muhammad Khalis Abdul Karim, Universiti Putra Malaysia
Aris Doyan, University of Mataram
Yap Siew Hong, Universiti Putra Malaysia
Abdul Halim Shaari, Universiti Putra Malaysia
License
Copyright (c) 2025 Mohd Mustafa Awang Kechik

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Journal of Material Science and Radiation, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Journal of Material Science and Radiation.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).