Gamma Radiation Effects on SAC305 Lead-Free Solder for Space and Nuclear Electronics: XRD and Microstructural Evolution

Muhamad Mukhzani Muhamad Hanifah (1), Norliza Ismail (2), Azuraida Amat (3), Nurazlin Ahmad (4), Muhammad Nur Hisyam Rosman (5), Wilfred Paulus (6), Susilawati (7), Wan Yusmawati Wan Yusoff (8)
(1) Universiti Pertahanan Nasional Malaysia, Indonesia,
(2) Universiti Kuala Lumpur, Malaysia,
(3) Universiti Pertahanan Nasional Malaysia, Malaysia,
(4) Universiti Pertahanan Nasional Malaysia,Universiti Pertahanan Nasional Malaysia, Malaysia,
(5) Universiti Pertahanan Nasional Malaysia, Malaysia,
(6) Malaysian Nuclear Agency, Bangi, Malaysia,
(7) University of Mataram, Indonesia,
(8) Universiti Pertahanan Nasional Malaysia, Malaysia

Abstract

This study examines how gamma radiation (0–50,000 Gy) affects SAC305 (Sn‑3.0Ag‑0.5Cu) solder. Solder joints were irradiated using a Co‑60 source. Structural changes were evaluated by X‑ray diffraction and microstructural evolution were observed with optical microscopy after etching. XRD of β‑Sn reflections indicates smaller crystallite size with dose, together with higher lattice strain and greater dislocation density, consistent with crystal‑level alteration under irradiation. Microstructure observations show coarsening of β‑Sn grains and thickening of the Cu₆Sn₅ intermetallic (IMC) layer at the Cu/solder interface as dose increases. These outcomes reveal a two‑scale response: nanoscale coherent domains refine due to defect formation and accumulation, while microscale grains grow and the IMC layer thickens due to radiation‑enhanced diffusion, which increases atomic mobility. Recognizing that the system involves different length scales helps resolve the apparent contradiction between the decreasing crystallite size and the increasing grain size. Practically, the combined increases in lattice strain, dislocation density, and IMC thickness may reduce reliability and fatigue life of SAC305 solder joints in high‑radiation environments such as space and nuclear applications

Full text article

Generated from XML file

References

Choi, S., Lim, S., Hanifah, M. M. M., Matteini, P., Yusoff, W. Y. W., & Hwang, B. (2025). An Introductory Overview of Various Typical Lead-Free Solders for TSV Technology. Inorganics, 13(3), 1–13. https://doi.org/10.3390/inorganics13030086

Coyle, R. J., Sweatman, K., & Arfaei, B. (2015). Thermal Fatigue Evaluation of Pb-Free Solder Joints: Results, Lessons Learned, and Future Trends. JOM, 67(10). https://doi.org/10.1007/s11837-015-1595-1

Cunningham, W. S., Hattar, K., Zhu, Y., Edwards, D. J., & Trelewicz, J. R. (2021). Suppressing irradiation induced grain growth and defect accumulation in nanocrystalline tungsten through grain boundary doping. Acta Materialia, 206. https://doi.org/10.1016/j.actamat.2021.116629

Debelle, A., Crocombette, J. P., Boulle, A., Chartier, A., Jourdan, T., Pellegrino, S., Bachiller-Perea, D., Carpentier, D., Channagiri, J., Nguyen, T. H., Garrido, F., & Thomé, L. (2018). Lattice strain in irradiated materials unveils a prevalent defect evolution mechanism. Physical Review Materials, 2(1). https://doi.org/10.1103/PhysRevMaterials.2.013604

Dele-Afolabi, T. T., Ansari, M. N. M., Azmah Hanim, M. A., Oyekanmi, A. A., Ojo-Kupoluyi, O. J., & Atiqah, A. (2023). Recent advances in Sn-based lead-free solder interconnects for microelectronics packaging: Materials and technologies. In Journal of Materials Research and Technology (Vol. 25, pp. 4231–4263). Elsevier Editora Ltda. https://doi.org/10.1016/j.jmrt.2023.06.193

Desmarest, S. G. (2012). Reliability of Pb-free solders for harsh environment electronic assemblies. In Materials Science and Technology (Vol. 28, Number 3). https://doi.org/10.1179/026708311X13135951528964

Egami, T., Ojha, M., Khorgolkhuu, O., Nicholson, D. M., & Stocks, G. M. (2015). Local Electronic Effects and Irradiation Resistance in High-Entropy Alloys. JOM, 67(10). https://doi.org/10.1007/s11837-015-1579-1

Feichtmayer, A., Boleininger, M., Riesch, J., Mason, D. R., Reali, L., Höschen, T., Fuhr, M., Schwarz-Selinger, T., Neu, R., & Dudarev, S. L. (2024). Fast low-temperature irradiation creep driven by athermal defect dynamics. Communications Materials, 5(1). https://doi.org/10.1038/s43246-024-00655-5

Guan, Q., Hang, C., Li, S., Yu, D., Ding, Y., Wang, X., & Tian, Y. (2023). Research Progress on the Solder Joint Reliability of Electronics Using in Deep Space Exploration. In Chinese Journal of Mechanical Engineering (English Edition) (Vol. 36, Number 1). Springer. https://doi.org/10.1186/s10033-023-00834-4

Guan, Q., Hang, C., Yao, G., Li, S., Yu, D., Ding, Y., & Tian, Y. (2023). Effect of gamma irradiation on microstructural evolution and mechanical properties of Sn3Ag0.5Cu solder joints. Journal of Materials Research and Technology, 24, 6022–6033. https://doi.org/10.1016/j.jmrt.2023.04.148

Ismail, N., Jalar, A., Abu Bakar, M., Safee, N. S., Wan Yusoff, W. Y., & Ismail, A. (2021). Microstructural evolution and micromechanical properties of SAC305/CNT/CU solder joint under blast wave condition. Soldering and Surface Mount Technology, 33(1). https://doi.org/10.1108/SSMT-11-2019-0035

Ismail, N., Wan Yusoff, W. Y., Abdul Manaf, N. A., Amat, A., Ahmad, N., & Salleh, E. M. (2024). A comprehensive review of radiation effects on solder alloys and solder joints. In Defence Technology (Vol. 39, pp. 86–102). KeAi Communications Co. https://doi.org/10.1016/j.dt.2024.02.007

Ismail, N., Yusoff, W. Y. W., Lehan, N. F. N. M., Abdul Manaf, N. A., Amat, A., Ahmad, N., & Paulus, W. (2024). Microstructural evolution of 96.5Sn-3.0Ag-0.5Cu (SAC305) solder joints induced by variation doses of gamma-irradiation. Journal of Materials Science: Materials in Electronics, 35(1). https://doi.org/10.1007/s10854-023-11749-0

Jiang, N., Zhang, L., Liu, Z. Q., Sun, L., Long, W. M., He, P., Xiong, M. Y., & Zhao, M. (2019). Reliability issues of lead-free solder joints in electronic devices. In Science and Technology of Advanced Materials (Vol. 20, Number 1, pp. 876–901). Taylor and Francis Ltd. https://doi.org/10.1080/14686996.2019.1640072

Johnson, R. A., & Orlov, A. N. (1986). Physics of Radiation Effects in Crystals. https://api.semanticscholar.org/CorpusID:92875595

Jossou, E., Assefa, T. A., Suzana, A. F., Wu, L., Campbell, C., Harder, R., Cha, W., Kisslinger, K., Sun, C., Gan, J., Ecker, L., Robinson, I. K., & Gill, S. K. (2022). Three-dimensional strain imaging of irradiated chromium using multi-reflection Bragg coherent diffraction. Npj Materials Degradation, 6(1). https://doi.org/10.1038/s41529-022-00311-8

Kassim, H., Aljaafreh, M. J., Prasad, S., AlSalhi, M. S., Asemi, N. N., & Manikandan, E. (2023). Investigating the effect of gamma irradiation on the structural, optical, and electrical properties of bismuth-modified strontium titanate ceramics. Journal of Materials Science: Materials in Electronics, 34(7). https://doi.org/10.1007/s10854-023-10039-z

Lee, J. Y., & Chen, C. M. (2022). Effects of Initial Morphology on Growth Kinetics of Cu6Sn5 at SAC305/Cu Interface during Isothermal Aging. Materials, 15(14). https://doi.org/10.3390/ma15144751

Lehan, N. F. N. M., Yusoff, W. Y. W., Ahmad, K. Z. K., Ismail, N., Amat, A., Manaf, N. A. A., Abdullah, M. F., Jalar, A., Rahman, I. A., & Salleh, E. M. (2022). Influence of Gamma Radiation on Eutectic Phase Area and Hardness Properties of SAC305 Solder. Jurnal Teknologi, 84(6–2), 113–118. https://doi.org/10.11113/jurnalteknologi.v84.19358

Lehan, N. F. N. M., Yusoff, W. Y. W., Sobri, N. S., Ahmad, K. Z. K., Abdullah, M. F., Amat, A., Jalar, A., Rahman, I. A., & Salleh, E. M. (2022). EDS analysis on effect of low dosage gamma radiation and micromechanical properties of SnAg3Cu0.5 solder. Journal of Materials Science: Materials in Electronics, 33(7), 4225–4236. https://doi.org/10.1007/s10854-021-07617-4

Leoni, M. (2019). 5.1. Domain size and domain-size distributions. International Tables for Crystallography, H, 524–537. https://doi.org/https://doi.org/10.1107/97809553602060000966

Li, L., Du, X., Chen, J., & Wu, Y. (2024). Thermal Fatigue Failure of Micro-Solder Joints in Electronic Packaging Devices: A Review. In Materials (Vol. 17, Number 10). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/ma17102365

Maniar, Y., Konstantin, G., Sharma, A., Binkele, P., & Schmauder, S. (2020). Solder Joint Lifetime Modeling Under Random Vibrational Load Collectives. JOM, 72(2). https://doi.org/10.1007/s11837-019-03947-1

Mannan, A., Kazmi, K. R., Khan, M. S., & Khan, I. H. (2006). A method for the determination of relative crystallinity of minerals by X-ray diffraction. Pakistan Journal of Scientific and Industrial Research, 49(2).

Mote, V., Purushotham, Y., & Dole, B. (2012). Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. Journal of Theoretical and Applied Physics, 6(1). https://doi.org/10.1186/2251-7235-6-6

Muhamad Hanifah, M. M., Ahmad Yusof, A. H., Amat, A., Ahmad, N., Yahya, A., Abdul Manaf, N. A., & Wan Yusoff, W. Y. (2025). Effect of La₂O₃ Doping on the Hardness, Microstructure and Void Formation of Sn-Ag-Cu (SAC305) Lead-Free Solder Alloys. Solid State Science and Technology, 33(2), 119–126.

Paulus, W., Abdul Rahman, I., Jalar, A., Kamil Othman, N., Ismail, R., Wan Yusoff, W. Y., & Abu Bakar, M. (2017). The relationship between XRD peak intensity and mechanical properties of irradiated Lead-Free solder. Materials Science Forum, 888 MSF, 423–427. https://doi.org/10.4028/www.scientific.net/MSF.888.423

Paulus, W., Rahman, I. A., Jalar, A., Kamil, I., Yusoff, W. Y. W., & Bakar, M. A. (2015). Effect of gamma radiation on micromechanical hardness of lead-free solder joint. AIP Conference Proceedings, 1678. https://doi.org/10.1063/1.4931275

Prasad, K., Obana, M., Ito, A., & Torizuka, S. (2021). Synchrotron diffraction characterization of dislocation density in additively manufactured IN 718 superalloy. Materials Characterization, 179. https://doi.org/10.1016/j.matchar.2021.111379

Rahman, M. M., Chen, W. Y., Mu, L., Xu, Z., Xiao, Z., Li, M., Bai, X. M., & Lin, F. (2020). Defect and structural evolution under high-energy ion irradiation informs battery materials design for extreme environments. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-18345-4

Rosman, M. N. H., Yusoff, W. Y. W., Manaf, N. A. A., Abdullah, M. F., Abdullah, C. A. C., & Zyoud, S. H. (2024). An Investigation of the Effect of Wide Range Gamma Radiation from Nanoindentation of the SAC305 Solder Alloy. Journal of Advanced Research in Micro and Nano Engineering, 17(1), 18–27. https://doi.org/10.37934/armne.17.1.1827

Silva, B. L., Mendes, P. H., Garcia, A., & Spinelli, J. E. (2022). Effect of Aging on Dendritic Array, Ag3Sn Spacing, and Hardness of a Sn-2Ag-0.7Cu Solder Alloy. Journal of Electronic Materials, 51(8). https://doi.org/10.1007/s11664-022-09713-5

Ungár, T. (2004). Microstructural parameters from X-ray diffraction peak broadening. Scripta Materialia, 51(8 SPEC. ISS.), 777–781. https://doi.org/10.1016/j.scriptamat.2004.05.007

Ungár, T., Tichy, G., Gubicza, J., & Hellmig, R. J. (2005). Correlation between subgrains and coherently scattering domains. Powder Diffraction, 20(4), 366–375. https://doi.org/10.1154/1.2135313

Wan Yusoff, W. Y., Ismail, N., Mohmad Lehan, N. F. N., Amat, A., Ku Ahmad, K. Z., Jalar, A., & Abdul Rahman, I. (2023). Micromechanical response of SAC305 solder alloy under gamma radiation via nanoindentation approach. Soldering and Surface Mount Technology, 35(1), 51–58. https://doi.org/10.1108/SSMT-09-2021-0060

Wang, J., Xue, S., Lv, Z., Wang, L., Liu, H., & Wen, L. (2018). Effect of gamma-ray irradiation on microstructure and mechanical property of Sn63Pb37 solder joints. Journal of Materials Science: Materials in Electronics, 29(24), 20726–20733. https://doi.org/10.1007/s10854-018-0213-8

Wang, J., Xue, S., Lv, Z., Wen, L., & Liu, S. (2019). Microstructure and performance evolution of SnPbSb solder joint under γ-ray irradiation and thermal cycling. Journal of Materials Science: Materials in Electronics, 30(5), 4990–4999. https://doi.org/10.1007/s10854-019-00795-2

Wen, L., Xue, S., Wang, L., Liu, H., & Wu, J. (2020). Microstructural evolution and shear performance of AuSn20 solder joint under gamma-ray irradiation and thermal cycling. Journal of Materials Science: Materials in Electronics, 31(9), 7200–7210. https://doi.org/10.1007/s10854-020-03292-z

Wu, M., Wang, S. Lin, Yin, L. meng, Chen, Y. hua, Hong, M., Sun, W. Jun, Yao, Z. Xiang, Ni, J. Ming, Lu, P., Zhang, T. Ming, & Xie, J. Lin. (2023). Oxidation behavior and intermetallic compound growth dynamics of SAC305/Cu solder joints under rapid thermal shock. Transactions of Nonferrous Metals Society of China (English Edition), 33(10), 3054–3066. https://doi.org/10.1016/S1003-6326(23)66317-4

Yusoff, W. Y. W., Lehan, N. F. N. M., Sobri, N. S., Ahmad, K. Z. K., Jalar, A., & Rahman, I. A. (2021). Influences of low dose gamma radiation on hardness and microstructure properties of green solder joint. Journal of Physics: Conference Series, 1816(1). https://doi.org/10.1088/1742-6596/1816/1/012118

Zheng, R., Xuan, W., Xie, J., Chen, S., Yang, L., & Zhang, L. (2023). The Evolution of Structural Defects under Irradiation in W by Molecular Dynamics Simulation. Materials, 16(12). https://doi.org/10.3390/ma16124414

Authors

Muhamad Mukhzani Muhamad Hanifah
Norliza Ismail
Azuraida Amat
Nurazlin Ahmad
Muhammad Nur Hisyam Rosman
Wilfred Paulus
Susilawati
Wan Yusmawati Wan Yusoff
yusmawati@upnm.edu.my (Primary Contact)
Hanifah, M. M. M., Ismail, N., Amat, A., Ahmad, N., Rosman, M. N. H., Paulus, W., … Yusoff, W. Y. W. (2026). Gamma Radiation Effects on SAC305 Lead-Free Solder for Space and Nuclear Electronics: XRD and Microstructural Evolution. AMPLITUDO : Journal of Science and Technology Innovation, 5(1), 158–167. https://doi.org/10.56566/amplitudo.v5i1.531
Copyright and license info is not available

Article Details

Most read articles by the same author(s)