Green Artificial intelligence Foundations, Applications, and Pathways to Sustainable Development

Musawer Hakimi (1), Omid Tarashtwal (2), Hamayoon Ghafory (3)
(1) Samangan University, Afghanistan,
(2) University of Nebraska-Lincoln, United States,
(3) Kabul Education University, Afghanistan

Abstract

The fast evolution of artificial intelligence (AI) systems has worried people about their environmental impact thus prompting the rise of Green AI. In the present systematic review, we are going through the 32 articles published in peer-reviewed journals that were analyzed based on PRISMA standards regarding the conceptual bases, applications, and the future of Green AI. The review identified three paradigms: Green AI (computational efficiency), Sustainable AI (holistic socio-technical responsibility), and AI for Green (AI applied to sustainability challenges). A large part of the resources that would be used for the environments, monitoring, agriculture, and smart city applications can be saved by 15-30% through Green AI. The main difficulties are performance and efficiency balancing, limiting budget, and a research mentality that values precision more than sustainability. The research points out the dual function of AI in environmental matters as that of polluter and of a device for making the planet greener through humane practices and technologies. To sustainable AI, efficient algorithm design, regulatory support, the establishment of carbon-aware metrics, and collaboration among different disciplines to create the adoption of AI that is both economical and ethical are needed

Full text article

Generated from XML file

References

Al‐Raeei, M. (2025). The smart future for sustainable development: Artificial intelligence solutions for sustainable urbanization. Sustainable development, 33(1), 508-517. https://doi.org/10.1002/sd.3131

Alzoubi, Y. I., & Mishra, A. (2024). Green artificial intelligence initiatives: Potentials and challenges. Journal of Cleaner Production, 468, 143090. https://doi.org/10.1016/j.jclepro.2024.143090

Bachina, L., Kanagala, A., Korapu, S., & Ratnaraju, P. (2025). Sustainable materials for artificial intelligence (AI) technology adoption for energy-efficient patient-centric healthcare solutions. Journal of Education and Health Promotion, 14. https://doi.org/10.4103/jehp.jehp_527_24

Barbierato, E., & Gatti, A. (2024). Toward green ai: A methodological survey of the scientific literature. IEEE Access, 12, 23989-24013. https://doi.org/10.1109/ACCESS.2024.3360705

Bolón-Canedo, V., Morán-Fernández, L., Cancela, B., & Alonso-Betanzos, A. (2024). A review of green artificial intelligence: Towards a more sustainable future. Neurocomputing, 599, 128096. https://doi.org/10.1016/j.neucom.2024.128096

Chen, M., Wang, S., & Wang, X. (2024). How does artificial intelligence impact green development? Evidence from China. Sustainability, 16(3), 1260. https://doi.org/10.3390/su16031260

Dash, S. (2025). Green ai: Enhancing sustainability and energy efficiency in ai-integrated enterprise systems. IEEE Access. https://doi.org/10.1109/ACCESS.2025.3532838

Dhar, P. (2020). The carbon footprint of machine learning. Nature Machine Intelligence, 2(8), 423–425. https://doi.org/10.1038/s42256-020-0219-9

Doyan, A., Purwoko, A. A., Ibrahim, I., Ahzan, S., Gummah, S., Bahtiar, B., … & Pineda, C. I. S. (2025). A systematic review of the trends in thin film characteristics research as electronic devices (2015–2024). AMPLITUDO: Journal of Science and Technology Innovation, 4(2), 125–134. https://doi.org/10.56566/amplitudo.v4i2.197

Farrell, G., Adamidi, E., Buono, R. A., Anton, M., Attafi, O. A., Gutierrez, S. C., Capriotti, E., Castro, L. J., Cirillo, D., Crossman, L., Dessimoz, C., Dimopoulos, A., Fernandez-Diaz, R., Fragkouli, S.-C., Goble, C., Gu, W., Hancock, J. M., Khanteymoori, A., Lenaerts, T., … Tosatto, S. C. E. (2025). Open and sustainable AI: Challenges, opportunities and the road ahead in the life sciences. arXiv. https://doi.org/10.48550/arXiv.2505.16619

Feffer, M., Sinha, A., Deng, W. H., Lipton, Z. C., & Heidari, H. (2024, October). Red-teaming for generative AI: Silver bullet or security theater?. In Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society (Vol. 7, pp. 421-437). https://doi.org/10.1609/aies.v7i1.31647

Fowdur, T. P., & Babooram, L. (2024). AI solutions for the United Nations Sustainable Development Goals (UN SDGs). Apress. https://doi.org/10.1007/979-8-8688-0536-3

Georgiou, S., Kechagia, M., Sharma, T., Sarro, F., & Zou, Y. (2022). Green AI: Do deep learning frameworks have different costs? In ICSE '22: Proceedings of the 44th International Conference on Software Engineering (pp. 1082–1094). https://doi.org/10.1145/3510003.3510221

Gohr, C., Rodríguez, G., Belomestnykh, S., Berg-Moelleken, D., Chauhan, N., Engler, J. O., ... & von Wehrden, H. (2025). Artificial intelligence in sustainable development research. Nature Sustainability, 1-9. https://doi.org/10.1038/s41893-025-01598-6

Gosselink, B. H., Brandt, K., Croak, M., DeSalvo, K., Gomes, B., Ibrahim, L., Johnson, M., Matias, Y., Porat, R., Walker, K., & Manyika, J. (2024). AI in action: Accelerating progress towards the Sustainable Development Goals. arXiv. https://doi.org/10.48550/arxiv.2407.02711

Hakimi, M., Suranata, I. W. A., Ezam, Z., Samadzai, A. W., Enayat, W., Quraishi, T., & Fazil, A. W. (2025). Generative AI in enhancing hydroponic nutrient solution monitoring. Jurnal Ilmiah Telsinas Elektro, Sipil dan Teknik Informasi, 8(1), 94–103. https://doi.org/10.38043/telsinas.v8i1.6242

Hakimi, M., Zarinkhail, S., & Sahnosh, F. A. (2025). Artificial intelligence and legal reform in developing countries: Advancing ethical, rights-based, and accountable digital governance. Jurnal Ilmiah Telsinas Elektro, Sipil dan Teknik Informasi, 8(2), 127–144. https://doi.org/10.38043/telsinas.v8i2.6934

Hernandez, D., Pasha, L., Yusuf, D. A., Nurfaizi, R., & Julianingsih, D. (2024). The role of artificial intelligence in sustainable agriculture and waste management: Towards a green future. International Transactions on Artificial Intelligence, 2(2), 150-157. https://doi.org/10.33050/italic.v2i2.552

Kaack, L. H., Donti, P. L., Strubell, E., Kamiya, G., Creutzig, F., & Rolnick, D. (2022). Aligning artificial intelligence with climate change mitigation. Nature Climate Change, 12(6), 518–527. https://doi.org/10.1038/s41558-022-01377-7

Kasubi, J. W. (2025). Mapping the knowledge base on sustainable AI: A systematic review. Journal of Research Innovation and Implications in Education, 9(2), 113–131. https://doi.org/10.59765/vyw74p

Khan, Z., Khan, N., & Zhu, X. (2025). Harnessing artificial intelligence for environmental sustainability via human capital and renewable energy. Scientific Reports, 15, 12540. https://doi.org/10.1038/s41598-025-12540-y

Kulkov, I., Kulkova, J., Rohrbeck, R., Menvielle, L., Kaartemo, V., & Makkonen, H. (2024). Artificial intelligence‐driven sustainable development: Examining organizational, technical, and processing approaches to achieving global goals. Sustainable Development, 32(3), 2253-2267. https://doi.org/10.1002/sd.2773

Liengpunsakul, S. (2021). Artificial intelligence and sustainable development in China. The Chinese Economy, 54(4), 235-248. https://doi.org/10.1080/10971475.2020.1857062

Longpre, S., Kapoor, S., Klyman, K., Ramaswami, A., Bommasani, R., Blili-Hamelin, B., ... & Henderson, P. (2024). A safe harbor for ai evaluation and red teaming. arXiv preprint arXiv:2403.04893. https://doi.org/10.48550/arXiv.2403.04893

Luo, Q., & Feng, P. (2024). Exploring artificial intelligence and urban pollution emissions:" Speed bump" or" accelerator" for sustainable development?. Journal of Cleaner Production, 463, 142739. https://doi.org/10.1016/j.jclepro.2024.142739

Morand, C., Ligozat, A. L., & Névéol, A. (2024). How Green Can AI Be? A Study of Trends in Machine Learning Environmental Impacts. arXiv preprint arXiv:2412.17376. https://doi.org/10.48550/arXiv.2412.17376

Mrówczyńska, M., Sztubecka, M., Skiba, M., Bazan-Krzywoszańska, A., & Bejga, P. (2019). The use of artificial intelligence as a tool supporting sustainable development local policy. Sustainability, 11(15), 4199. https://doi.org/10.3390/su11154199

Perucica, N., & Andjelkovic, K. (2022). Is the future of AI sustainable? A case study of the European Union. Transforming Government: People, Process and Policy, 16(3), 347-358. https://doi.org/10.1108/TG-06-2021-0106

Perucica, N., & Andjelkovic, K. (2022). Is the future of AI sustainable? A case study of the European Union. Transforming Government: People, Process and Policy, 16(3), 347–358. https://doi.org/10.1108/tg-06-2021-0106

Raman, R., Pattnaik, D., Lathabai, H. H., Kumar, C., Govindan, K., & Nedungadi, P. (2024). Green and sustainable AI research: an integrated thematic and topic modeling analysis. Journal of Big Data, 11(1), 1-28. https://doi.org/10.1186/s40537-024-00920-x

Rani, S., Dutta, S., Rocha, Á., & Cengiz, K. (Eds.). (2025). AI and data analytics in precision agriculture for sustainable development. Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-93087-4

Richie, C. (2022). Environmentally sustainable development and use of artificial intelligence in health care. Bioethics, 36(5), 547-555. https://doi.org/10.1111/bioe.13018

Sætra, H. S. (2021). AI in context and the sustainable development goals: Factoring in the unsustainability of the sociotechnical system. Sustainability, 13(4), 1738. https://doi.org/10.3390/su13041738

Schwartz, R., Dodge, J., Smith, N. A., & Etzioni, O. (2020). Green ai. Communications of the ACM, 63(12), 54-63. https://doi.org/10.1145/3381831

Shetty, S., Joshi, N., & Banubakode, A. (2024). Shifting from Red AI To Green AI. In Artificial Intelligence, Machine Learning and User Interface Design (pp. 191-209). Bentham Science Publishers. https://doi.org/10.2174/97898151796061240101

Sirat, A. W., Hakimi, M., Himmat, B., & Enayat, W. (2025). Artificial intelligence in educational leadership: Strategic, analytical, interactive, and decision-making applications for the digital age. Jurnal Ilmiah Telsinas Elektro, Sipil dan Teknik Informasi, 8(2), 210–224. https://doi.org/10.38043/telsinas.v8i2.7044

Tabbakh, A., Al Amin, L., Islam, M., Mahmud, G. I., Chowdhury, I. K., & Mukta, M. S. H. (2024). Towards sustainable AI: a comprehensive framework for Green AI. Discover Sustainability, 5(1), 408. https://doi.org/10.1007/s43621-024-00641-4

Tarashtwal, O., Hakimi, M., & Naderi, Z. (2025). The role of artificial intelligence in achieving the UN Sustainable Development Goals (SDGs) in low-income nations. Jurnal Ilmiah Akuntansi dan Bisnis, 10(2), 163–178. https://doi.org/10.38043/jiab.v10i2.7184

Tarashtwal, O., Shamsi, S. E., & Popal, Z. (2025). Assessing the potential of Internet of Things technologies for community development in Afghanistan. Gameology and Multimedia Expert, 3(1) (In Press). https://doi.org/10.29103/game.v3i1.25375

Tarashtwal, O., Shamsi, S. E., & Popal, Z. (2026). Assessing the potential of Internet of Things technologies for community development in Afghanistan. Gameology and Multimedia Expert, 3(1), 1–9. https://ojs.unimal.ac.id/game/article/view/25375

Toderas, M. (2025). Artificial intelligence for sustainability: A systematic review and critical analysis of AI applications, challenges, and future directions. Sustainability, 17(17), 8049. https://doi.org/10.3390/su17178049

Van Wynsberghe, A. (2021). Sustainable AI: AI for sustainability and the sustainability of AI. AI and Ethics, 1(3), 213–218. https://doi.org/10.1007/s43681-021-00043-6

Verdecchia, R., Lago, P., de Vries, C., & Malavolta, I. (2023). A systematic review of Green AI. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 13(4), e1507. https://doi.org/10.1002/widm.1507

Vinuesa, R., Azizpour, H., Leite, I., Balaam, M., Dignum, V., Domisch, S., Felländer, A., Langhans, S., Tegmark, M., & Nerini, F. F. (2020). The role of artificial intelligence in achieving the Sustainable Development Goals. Nature Communications, 11(1), 1–10. https://doi.org/10.1038/s41467-019-14108-y

Walshe, R., Koene, A., Baumann, S., Panella, M., Maglaras, L., & Medeiros, F. (2021, June). Artificial intelligence as enabler for sustainable development. In 2021 IEEE international conference on engineering, technology and innovation (ICE/ITMC) (pp. 1-7). IEEE. https://ieeexplore.ieee.org/abstract/document/9570215/

Wang, Q., Zhang, F., & Li, R. (2025). Artificial intelligence and sustainable development during urbanization: Perspectives on AI R&D innovation, AI infrastructure, and AI market advantage. Sustainable Development, 33(1), 1136-1156. https://doi.org/10.1108/APJBA-05-2024-0301

Whig, P., Silva, N., Elngar, A. A., Aneja, N., & Sharma, P. (Eds.). (2025). Sustainable development through machine learning, AI and IoT. Springer Nature Switzerland. http://dx.doi.org/10.1007/978-3-031-71729-1

Yigitcanlar, T., Mehmood, R., & Corchado, J. M. (2021). Green artificial intelligence: Towards an efficient, sustainable and equitable technology for smart cities and futures. Sustainability, 13(16), 8952. https://doi.org/10.3390/su13168952

Zeng, M., & Zhang, W. (2024). Green finance: The catalyst for artificial intelligence and energy efficiency in Chinese urban sustainable development. Energy Economics, 139, 107883. https://doi.org/10.1016/j.eneco.2024.107883

Zhou, C. (2025). The impact of artificial intelligence on the sustainable development performance of Chinese manufacturing enterprises. Systems, 13(7), 496. https://doi.org/10.3390/systems13070496

Authors

Musawer Hakimi
musawer@adc.edu.in (Primary Contact)
Omid Tarashtwal
Hamayoon Ghafory
Hakimi, M., Tarashtwal, O., & Ghafory, H. (2026). Green Artificial intelligence Foundations, Applications, and Pathways to Sustainable Development. AMPLITUDO : Journal of Science and Technology Innovation, 5(1), 36–52. https://doi.org/10.56566/amplitudo.v5i1.524
Copyright and license info is not available

Article Details