Microalgae Technology in Aquaculture Applications: A Comprehensive Literature Review
Abstract
Microalgae are highly valuable across various industries due to their rich nutritional content and positive environmental impact. In the fast-growing field of aquaculture aimed at meeting global food needs, integrating microalgae technology can be highly beneficial. This literature review explores the diverse roles of microalgae in enhancing aquaculture, focusing on their nutritional benefits, water quality management, larviculture, Integrated Multi-Trophic Aquaculture (IMTA) systems, and bioremediation. Microalgae are excellent natural nutrient sources, offering high protein content, omega-3 fatty acids, vitamins, minerals, and antioxidants, vital for aquatic organism growth and health. Their contributions to water quality maintenance, larval stage nutrition, and waste nutrient uptake are critical. Additionally, microalgae play a pivotal role in IMTA by acting as primary producers and minimizing environmental impact. The review emphasizes challenges like economic constraints and strain optimization, underscoring the need for further research to fully leverage microalgae's potential in aquaculture, promising advancements to revolutionize the industry and enhance global food security.
Full text article
References
Ahmed, N., & Azra, M. N. (2022a). Aquaculture Production and Value Chains in the COVID-19 Pandemic. Current Environmental Health Reports, 9(3), 423–435. https://doi.org/10.1007/s40572-022-00364-6
Ahmed, N., & Azra, M. N. (2022b). Aquaculture Production and Value Chains in the COVID-19 Pandemic. Current Environmental Health Reports, 9(3), 423–435. https://doi.org/10.1007/s40572-022-00364-6 DOI: https://doi.org/10.1007/s40572-022-00364-6
Amenorfenyo, D. K., Huang, X., Zhang, Y., Zeng, Q., Zhang, N., Ren, J., & Huang, Q. (2019). Microalgae Brewery Wastewater Treatment: Potentials, Benefits and the Challenges. International Journal of Environmental Research and Public Health, 16(11), 1910. https://doi.org/10.3390/ijerph16111910 DOI: https://doi.org/10.3390/ijerph16111910
Ayswaria, R., Vijayan, J., & Nathan, V. K. (2023). Antimicrobial peptides derived from microalgae for combating antibiotic resistance: Current status and prospects. Cell Biochemistry and Function, 41(2), 142–151. https://doi.org/10.1002/cbf.3779 DOI: https://doi.org/10.1002/cbf.3779
Balasubramaniam, V., Gunasegavan, R. D.-N., Mustar, S., Lee, J. C., & Mohd Noh, M. F. (2021). Isolation of Industrial Important Bioactive Compounds from Microalgae. Molecules, 26(4), 943. https://doi.org/10.3390/molecules26040943 DOI: https://doi.org/10.3390/molecules26040943
Bashir, M., Farooq, M., Khalid, S., & Ali, Q. (2022). The Role Of Microalgae In Different Biotechnology Applications. Bulletin of Biological and Allied Sciences Research, 2022(1), 25. https://doi.org/10.54112/bbasr.v2022i1.25 DOI: https://doi.org/10.54112/bbasr.v2022i1.25
Cardoso, C., Gomes, R., Rato, A., Joaquim, S., Machado, J., Gonçalves, J. F., Vaz‐Pires, P., Magnoni, L., Matias, D., Coelho, I., Delgado, I., Castanheira, I., Matos, J., Ozório, R., Bandarra, N., & Afonso, C. (2019). Elemental composition and bioaccessibility of farmed oysters ( Crassostrea gigas ) fed different ratios of dietary seaweed and microalgae during broodstock conditioning. Food Science & Nutrition, 7(8), 2495–2504. https://doi.org/10.1002/fsn3.1044 DOI: https://doi.org/10.1002/fsn3.1044
Chacón-Lee, T. L., & González-Mariño, G. E. (2010). Microalgae for “Healthy” Foods-Possibilities and Challenges. Comprehensive Reviews in Food Science and Food Safety, 9(6), 655–675. https://doi.org/10.1111/j.1541-4337.2010.00132.x DOI: https://doi.org/10.1111/j.1541-4337.2010.00132.x
Chen, F., Qian, J., He, Y., Leng, Y., & Zhou, W. (2022). Could Chlorella pyrenoidosa be exploited as an alternative nutrition source in aquaculture feed? A study on the nutritional values and anti-nutritional factors. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.1069760 DOI: https://doi.org/10.3389/fnut.2022.1069760
Chinnasamy, S., Ramakrishnan, B., Bhatnagar, A., & Das, K. (2009). Biomass Production Potential of a Wastewater Alga Chlorella vulgaris ARC 1 under Elevated Levels of CO2 and Temperature. International Journal of Molecular Sciences, 10(2), 518–532. https://doi.org/10.3390/ijms10020518 DOI: https://doi.org/10.3390/ijms10020518
Dantas, F. De M., Santana, T. M., Kojima, J. T., Fonseca, F. A. L. Da, Lopes, A. C. C., Carvalho, T. B., & Gonçalves, L. U. (2022). Pirarucu Larviculture in green water provides heavier fish and modulates locomotor activity. Acta Amazonica, 52(2), 114–121. https://doi.org/10.1590/1809-4392202100932 DOI: https://doi.org/10.1590/1809-4392202100932
Emerenciano, M., Ballester, E. L. C., Cavalli, R. O., & Wasielesky, W. (2012). Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille, 1817). Aquaculture Research, 43(3), 447–457. https://doi.org/10.1111/j.1365-2109.2011.02848.x DOI: https://doi.org/10.1111/j.1365-2109.2011.02848.x
Falaise, C., François, C., Travers, M.-A., Morga, B., Haure, J., Tremblay, R., Turcotte, F., Pasetto, P., Gastineau, R., Hardivillier, Y., Leignel, V., & Mouget, J.-L. (2016). Antimicrobial Compounds from Eukaryotic Microalgae against Human Pathogens and Diseases in Aquaculture. Marine Drugs, 14(9), 159. https://doi.org/10.3390/md14090159 DOI: https://doi.org/10.3390/md14090159
Falkowski, P. G., Barber, R. T., & Smetacek, V. (1998). Biogeochemical Controls and Feedbacks on Ocean Primary Production. Science, 281(5374), 200–206. https://doi.org/10.1126/science.281.5374.200 DOI: https://doi.org/10.1126/science.281.5374.200
Fang, H., Zhuang, Z., Huang, L., Zhao, W., & Niu, J. (2022). Dietary Klebsormidium sp. Supplementation Improves Growth Performance, Antioxidant and Anti-Inflammatory Status, Metabolism, and Mid-Intestine Morphology of Litopenaeus Vannamei. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.857351 DOI: https://doi.org/10.3389/fnut.2022.857351
Fernandes, F., Silkina, A., Gayo-Peláez, J. I., Kapoore, R. V., de la Broise, D., & Llewellyn, C. A. (2022). Microalgae Cultivation on Nutrient Rich Digestate: The Importance of Strain and Digestate Tailoring under PH Control. Applied Sciences, 12(11), 5429. https://doi.org/10.3390/app12115429 DOI: https://doi.org/10.3390/app12115429
Ferreira, L. O., Astals, S., & Passos, F. (2022). Anaerobic co‐digestion of food waste and microalgae in an integrated treatment plant. Journal of Chemical Technology & Biotechnology, 97(6), 1545–1554. https://doi.org/10.1002/jctb.6900 DOI: https://doi.org/10.1002/jctb.6900
Gamboa-Delgado, J., & Márquez-Reyes, J. M. (2018). Potential of microbial-derived nutrients for aquaculture development. Reviews in Aquaculture, 10(1), 224–246. https://doi.org/10.1111/raq.12157 DOI: https://doi.org/10.1111/raq.12157
Gatlin, D. M., Barrows, F. T., Brown, P., Dabrowski, K., Gaylord, T. G., Hardy, R. W., Herman, E., Hu, G., Krogdahl, Å., Nelson, R., Overturf, K., Rust, M., Sealey, W., Skonberg, D., J Souza, E., Stone, D., Wilson, R., & Wurtele, E. (2007). Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquaculture Research, 38(6), 551–579. https://doi.org/10.1111/j.1365-2109.2007.01704.x DOI: https://doi.org/10.1111/j.1365-2109.2007.01704.x
Hai, N. V. (2015). The use of probiotics in aquaculture. Journal of Applied Microbiology, 119(4), 917–935. https://doi.org/10.1111/jam.12886 DOI: https://doi.org/10.1111/jam.12886
Han, P., Lu, Q., Fan, L., & Zhou, W. (2019). A Review on the Use of Microalgae for Sustainable Aquaculture. Applied Sciences, 9(11), 2377. https://doi.org/10.3390/app9112377 DOI: https://doi.org/10.3390/app9112377
Hancz, C. (2020). Feed efficiency, nutrient sensing and feeding stimulation in aquaculture: A review. Acta Agraria Kaposváriensis, 24(1), 35–54. https://doi.org/10.31914/aak.2375 DOI: https://doi.org/10.31914/aak.2375
Hashmi, Z., Bilad, M. R., Fahrurrozi, Zaini, J., Lim, J. W., & Wibisono, Y. (2023). Recent Progress in Microalgae-Based Technologies for Industrial Wastewater Treatment. Fermentation, 9(3), 311. https://doi.org/10.3390/fermentation9030311 DOI: https://doi.org/10.3390/fermentation9030311
Hassan, M. M., Perri, E., Parks, V., & Laramore, S. (2023). Growth, survival and fatty acid profile of hard clam, Mercenaria mercenaria , juveniles fed live microalgae diets. Aquaculture, Fish and Fisheries, 3(1), 51–60. https://doi.org/10.1002/aff2.80 DOI: https://doi.org/10.1002/aff2.80
Hawrot-Paw, M., Koniuszy, A., Gałczyńska, M., Zając, G., & Szyszlak-Bargłowicz, J. (2019). Production of Microalgal Biomass Using Aquaculture Wastewater as Growth Medium. Water, 12(1), 106. https://doi.org/10.3390/w12010106 DOI: https://doi.org/10.3390/w12010106
Hessen, D. O., Ågren, G. I., Anderson, T. R., Elser, J. J., & de Ruiter, P. C. (2004). CARBON SEQUESTRATION IN ECOSYSTEMS: THE ROLE OF STOICHIOMETRY. Ecology, 85(5), 1179–1192. https://doi.org/10.1890/02-0251 DOI: https://doi.org/10.1890/02-0251
Japa, L., Karnan, K., & Handayani, B. S. (2022). Quality Status of Coastal Waters of Special Economic Zone of Mandalika Central Lombok Based on the Community of Microalgae as Bioindicator. Jurnal Penelitian Pendidikan IPA, 8(6), 2864–2871. https://doi.org/10.29303/jppipa.v8i6.2740 DOI: https://doi.org/10.29303/jppipa.v8i6.2740
Kapoore, R. V., Wood, E. E., & Llewellyn, C. A. (2021). Algae biostimulants: A critical look at microalgal biostimulants for sustainable agricultural practices. Biotechnology Advances, 49, 107754. https://doi.org/10.1016/j.biotechadv.2021.107754 DOI: https://doi.org/10.1016/j.biotechadv.2021.107754
Katiyar, R., Banerjee, S., & Arora, A. (2021). Recent advances in the integrated biorefinery concept for the valorization of algal biomass through sustainable routes. Biofuels, Bioproducts and Biorefining, 15(3), 879–898. https://doi.org/10.1002/bbb.2187 DOI: https://doi.org/10.1002/bbb.2187
Kiron, V., Sørensen, M., Huntley, M., Vasanth, G. K., Gong, Y., Dahle, D., & Palihawadana, A. M. (2016). Defatted Biomass of the Microalga, Desmodesmus sp., Can Replace Fishmeal in the Feeds for Atlantic salmon. Frontiers in Marine Science, 3. https://doi.org/10.3389/fmars.2016.00067 DOI: https://doi.org/10.3389/fmars.2016.00067
Kosten, S., Almeida, R. M., Barbosa, I., Mendonça, R., Santos Muzitano, I., Sobreira Oliveira-Junior, E., Vroom, R. J. E., Wang, H.-J., & Barros, N. (2020). Better assessments of greenhouse gas emissions from global fish ponds needed to adequately evaluate aquaculture footprint. Science of The Total Environment, 748, 141247. https://doi.org/10.1016/j.scitotenv.2020.141247 DOI: https://doi.org/10.1016/j.scitotenv.2020.141247
Kourkouta, C., Tsipourlianos, A., Power, D. M., Moutou, K. A., & Koumoundouros, G. (2022). Variability of key-performance-indicators in commercial gilthead seabream hatcheries. Scientific Reports, 12(1), 17896. https://doi.org/10.1038/s41598-022-23008-z DOI: https://doi.org/10.1038/s41598-022-23008-z
Kumar, G., Shekh, A., Jakhu, S., Sharma, Y., Kapoor, R., & Sharma, T. R. (2020). Bioengineering of Microalgae: Recent Advances, Perspectives, and Regulatory Challenges for Industrial Application. Frontiers in Bioengineering and Biotechnology, 8. https://doi.org/10.3389/fbioe.2020.00914 DOI: https://doi.org/10.3389/fbioe.2020.00914
Li, H., Chen, S., Liao, K., Lu, Q., & Zhou, W. (2021). Microalgae biotechnology as a promising pathway to ecofriendly aquaculture: a state‐of‐the‐art review. Journal of Chemical Technology & Biotechnology, 96(4), 837–852. https://doi.org/10.1002/jctb.6624 DOI: https://doi.org/10.1002/jctb.6624
Liber, J. A., Bryson, A. E., Bonito, G., & Du, Z. (2020). Harvesting Microalgae for Food and Energy Products. Small Methods, 4(10), 2000349. https://doi.org/10.1002/smtd.202000349 DOI: https://doi.org/10.1002/smtd.202000349
Litchman, E., Klausmeier, C. A., Schofield, O. M., & Falkowski, P. G. (2007). The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. Ecology Letters, 10(12), 1170–1181. https://doi.org/10.1111/j.1461-0248.2007.01117.x DOI: https://doi.org/10.1111/j.1461-0248.2007.01117.x
Liu, Y., Lv, J., Feng, J., Liu, Q., Nan, F., & Xie, S. (2019). Treatment of real aquaculture wastewater from a fishery utilizing phytoremediation with microalgae. Journal of Chemical Technology & Biotechnology, 94(3), 900–910. https://doi.org/10.1002/jctb.5837 DOI: https://doi.org/10.1002/jctb.5837
Luo, L., Zhao, Z., Huang, X., Du, X., Wang, C., Li, J., Wang, L., & Xu, Q. (2016). Isolation, Identification, and Optimization of Culture Conditions of a Bioflocculant-Producing Bacterium Bacillus megaterium SP1 and Its Application in Aquaculture Wastewater Treatment. BioMed Research International, 2016, 1–9. https://doi.org/10.1155/2016/2758168 DOI: https://doi.org/10.1155/2016/2758168
Luo, X., Su, P., & Zhang, W. (2015). Advances in Microalgae-Derived Phytosterols for Functional Food and Pharmaceutical Applications. Marine Drugs, 13(7), 4231–4254. https://doi.org/10.3390/md13074231 DOI: https://doi.org/10.3390/md13074231
Ma, K., Bao, Q., Wu, Y., Chen, S., Zhao, S., Wu, H., & Fan, J. (2020). Evaluation of Microalgae as Immunostimulants and Recombinant Vaccines for Diseases Prevention and Control in Aquaculture. Frontiers in Bioengineering and Biotechnology, 8. https://doi.org/10.3389/fbioe.2020.590431 DOI: https://doi.org/10.3389/fbioe.2020.590431
Ma, Y., Liu, J., Li, M., Tao, W., Yu, Z., & Liu, Y. (2019). The use of Pseudoalteromonas sp. F15 in larviculture of the Yesso scallop, Patinopecten yessoensis. Aquaculture Research, 50(7), 1844–1850. https://doi.org/10.1111/are.14066 DOI: https://doi.org/10.1111/are.14066
Madkour, K., Dawood, M. A. O., & Sewilam, H. (2023). The Use of Artemia for Aquaculture Industry: An Updated Overview. Annals of Animal Science, 23(1), 3–10. https://doi.org/10.2478/aoas-2022-0041 DOI: https://doi.org/10.2478/aoas-2022-0041
Mulbry, W., Kondrad, S., & Buyer, J. (2008). Treatment of dairy and swine manure effluents using freshwater algae: fatty acid content and composition of algal biomass at different manure loading rates. Journal of Applied Phycology, 20(6), 1079–1085. https://doi.org/10.1007/s10811-008-9314-8 DOI: https://doi.org/10.1007/s10811-008-9314-8
Natrah, F. M. I., Bossier, P., Sorgeloos, P., Yusoff, F. Md., & Defoirdt, T. (2014). Significance of microalgal-bacterial interactions for aquaculture. Reviews in Aquaculture, 6(1), 48–61. https://doi.org/10.1111/raq.12024 DOI: https://doi.org/10.1111/raq.12024
Pantami, H. A., Ahamad Bustamam, M. S., Lee, S. Y., Ismail, I. S., Mohd Faudzi, S. M., Nakakuni, M., & Shaari, K. (2020). Comprehensive GCMS and LC-MS/MS Metabolite Profiling of Chlorella vulgaris. Marine Drugs, 18(7), 367. https://doi.org/10.3390/md18070367 DOI: https://doi.org/10.3390/md18070367
Posadas, E., Bochon, S., Coca, M., García-González, M. C., García-Encina, P. A., & Muñoz, R. (2014). Microalgae-based agro-industrial wastewater treatment: a preliminary screening of biodegradability. Journal of Applied Phycology, 26(6), 2335–2345. https://doi.org/10.1007/s10811-014-0263-0 DOI: https://doi.org/10.1007/s10811-014-0263-0
Ragasa, C., Amewu, S., & Asante, S. (2021). Immediate impacts of COVID-19 on the aquaculture value chain in Ghana. https://doi.org/10.2499/p15738coll2.134374 DOI: https://doi.org/10.2499/p15738coll2.134374
Rato, A., Joaquim, S., Tavares, T. G., Martins, Z. E., Guedes, A. C., Pereira, L. F., Machado, J., Matias, A. M., Gonçalves, J. F. M., Vaz-Pires, P., Magnoni, L. J., Ozório, R. O. A., & Matias, D. (2018). Viability of dietary substitution of live microalgae with dry Ulva rigida in broodstock conditioning of Pacific oyster ( Crassostrea gigas ). Biology Open. https://doi.org/10.1242/bio.035923 DOI: https://doi.org/10.1242/bio.035923
Rocha, R. J., Ribeiro, L., Costa, R., & Dinis, M. T. (2008). Does the presence of microalgae influence fish larvae prey capture? Aquaculture Research, 39(4), 362–369. https://doi.org/10.1111/j.1365-2109.2007.01746.x DOI: https://doi.org/10.1111/j.1365-2109.2007.01746.x
Röthig, T., Barth, A., Tschirner, M., Schubert, P., Wenning, M., Billion, A., Wilke, T., & Vilcinskas, A. (2023). Insect feed in sustainable crustacean aquaculture. Journal of Insects as Food and Feed, 1–24. https://doi.org/10.3920/JIFF2022.0117 DOI: https://doi.org/10.3920/JIFF2022.0117
Sales, R., Lopes, R. G., Derner, R. B., & Tsuzuki, M. Y. (2022). Concentrated microalgal biomass as a substitute for fresh microalgae produced on site at hatcheries. Aquaculture Research, 53(17), 5771–5786. https://doi.org/10.1111/are.16072 DOI: https://doi.org/10.1111/are.16072
Singh, A., Shourie, A., & Mazahar, S. (2023). Integration of Microalgae‐Based Wastewater Bioremediation–Biorefinery Process to Promote Circular Bioeconomy and Sustainability: A Review. CLEAN – Soil, Air, Water, 51(3), 2100407. https://doi.org/10.1002/clen.202100407 DOI: https://doi.org/10.1002/clen.202100407
Smith, V. H., Joye, S. B., & Howarth, R. W. (2006). Eutrophication of freshwater and marine ecosystems. Limnology and Oceanography, 51(1part2), 351–355. https://doi.org/10.4319/lo.2006.51.1_part_2.0351 DOI: https://doi.org/10.4319/lo.2006.51.1_part_2.0351
Snell, T. W., Johnston, R. K., & Matthews, A. B. (2019). Utilizing Brachionus biodiversity in marine finfish larviculture. Hydrobiologia, 844(1), 149–162. https://doi.org/10.1007/s10750-018-3776-8 DOI: https://doi.org/10.1007/s10750-018-3776-8
Soto-Sánchez, O., Hidalgo, P., González, A., Oliveira, P. E., Hernández Arias, A. J., & Dantagnan, P. (2023). Microalgae as Raw Materials for Aquafeeds: Growth Kinetics and Improvement Strategies of Polyunsaturated Fatty Acids Production. Aquaculture Nutrition, 2023, 1–19. https://doi.org/10.1155/2023/5110281 DOI: https://doi.org/10.1155/2023/5110281
Tarnecki, A. M., Burgos, F. A., Ray, C. L., & Arias, C. R. (2017). Fish intestinal microbiome: diversity and symbiosis unravelled by metagenomics. Journal of Applied Microbiology, 123(1), 2–17. https://doi.org/10.1111/jam.13415 DOI: https://doi.org/10.1111/jam.13415
Uribe-Wandurraga, Z. N., Igual, M., García-Segovia, P., & Martínez-Monzó, J. (2020). In vitro bioaccessibility of minerals from microalgae-enriched cookies. Food & Function, 11(3), 2186–2194. https://doi.org/10.1039/C9FO02603G DOI: https://doi.org/10.1039/C9FO02603G
Vieira, F. R., & Pecchia, J. A. (2022). Bacterial Community Patterns in the Agaricus bisporus Cultivation System, from Compost Raw Materials to Mushroom Caps. Microbial Ecology, 84(1), 20–32. https://doi.org/10.1007/s00248-021-01833-5 DOI: https://doi.org/10.1007/s00248-021-01833-5
von Alvensleben, N., Magnusson, M., & Heimann, K. (2016a). Salinity tolerance of four freshwater microalgal species and the effects of salinity and nutrient limitation on biochemical profiles. Journal of Applied Phycology, 28(2), 861–876. https://doi.org/10.1007/s10811-015-0666-6
von Alvensleben, N., Magnusson, M., & Heimann, K. (2016b). Salinity tolerance of four freshwater microalgal species and the effects of salinity and nutrient limitation on biochemical profiles. Journal of Applied Phycology, 28(2), 861–876. https://doi.org/10.1007/s10811-015-0666-6 DOI: https://doi.org/10.1007/s10811-015-0666-6
Wang, J., Zhang, Q., Chen, N., Chen, J., Zhou, J., Li, J., Wei, Y., & Bu, D. (2022). A new Desmodesmus sp. from the Tibetan Yamdrok Lake. PLOS ONE, 17(10), e0275799. https://doi.org/10.1371/journal.pone.0275799 DOI: https://doi.org/10.1371/journal.pone.0275799
Wikfors, G. H., & Ohno, M. (2001). Impact Of Algal Research In Aquaculture. Journal of Phycology, 37(6), 968–974. https://doi.org/10.1046/j.1529-8817.2001.01136.x DOI: https://doi.org/10.1046/j.1529-8817.2001.01136.x
Yaakob, Z., Ali, E., Zainal, A., Mohamad, M., & Takriff, M. S. (2014). An overview: biomolecules from microalgae for animal feed and aquaculture. Journal of Biological Research-Thessaloniki, 21(1), 6. https://doi.org/10.1186/2241-5793-21-6 DOI: https://doi.org/10.1186/2241-5793-21-6
Yang, L., Li, H., Lu, Q., & Zhou, W. (2021). Emerging trends of culturing microalgae for fish‐rearing environment protection. Journal of Chemical Technology & Biotechnology, 96(1), 31–37. https://doi.org/10.1002/jctb.6563 DOI: https://doi.org/10.1002/jctb.6563
Yang, X., Cao, D., Chen, J., Xiao, Z., & Daowd, A. (2020). AI and IoT-based collaborative business ecosystem: a case in Chinese fish farming industry. International Journal of Technology Management, 82(2), 151. https://doi.org/10.1504/IJTM.2020.107856 DOI: https://doi.org/10.1504/IJTM.2020.107856
Authors
Copyright (c) 2023 Zubair Hashmi, Syed Hassan Abbas, Syed Muhammad Osama, Atta Muhammad, Muhammad Tanzeel Usman, Abdul Sattar Jatoi, Mir Muhammad Bozdar
This work is licensed under a Creative Commons Attribution 4.0 International License.