Overview of Iron-Coated Dynamic Membrane for Water Treatment

Ibrahim Maina Idriss (1), Umar Abdullahi Isah (2), Daggash Muhammad Lawan (3), Kaka Goni Atiku (4), Zubair Hashmi (5)
(1) University of Maiduguri, Maiduguri, Nigeria,
(2) University of Maiduguri, Maiduguri, Nigeria,
(3) University of Maiduguri, Maiduguri, Nigeria,
(4) University of Maiduguri, Maiduguri, Nigeria,
(5) Dawood University of Engineering and Technology, Karachi, Pakistan


The increasing global demand for clean and potable water has prompted the exploration of innovative water treatment technologies. Pre-deposited dynamic membrane systems, a novel approach in wastewater treatment, have gained attention due to their versatility and effectiveness. This mini-review focuses on the application of iron oxide-based dynamic membranes in water treatment processes. It discusses the impact, formation, properties, and various water treatment applications of iron oxide dynamic membranes, highlighting their potential to revolutionize the field of sustainable water treatment.

Full text article

Generated from XML file


Al-Hobaib, A. S., AL-Sheetan, Kh. M., & El Mir, L. (2016). Effect of iron oxide nanoparticles on the performance of polyamide membrane for ground water purification. Materials Science in Semiconductor Processing, 42, 107–110. https://doi.org/10.1016/j.mssp.2015.08.004

Ali, A., Zafar, H., Zia, M., Ul Haq, I., Phull, A. R., Ali, J. S., & Hussain, A. (2016). Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnology, Science and Applications, Volume 9, 49–67. https://doi.org/10.2147/NSA.S99986

Anantharaman, A., Chun, Y., Hua, T., Chew, J. W., & Wang, R. (2020). Pre-deposited dynamic membrane filtration – A review. Water Research, 173, 115558. https://doi.org/10.1016/j.watres.2020.115558

Aragaw, T. A., Bogale, F. M., & Aragaw, B. A. (2021). Iron-based nanoparticles in wastewater treatment: A review on synthesis methods, applications, and removal mechanisms. Journal of Saudi Chemical Society, 25(8), 101280. https://doi.org/10.1016/j.jscs.2021.101280

Armendáriz-Ontiveros, M. M., Álvarez-Sánchez, J., Dévora-Isiordia, G. E., García, A., & Fimbres Weihs, G. A. (2020). Effect of seawater variability on endemic bacterial biofouling of a reverse osmosis membrane coated with iron nanoparticles (FeNPs). Chemical Engineering Science, 223, 115753. https://doi.org/10.1016/j.ces.2020.115753

Armendáriz-Ontiveros, M. M., Fimbres Weihs, G. A., De Los Santos Villalobos, S., & Salinas-Rodriguez, S. G. (2019). Biofouling of FeNP-Coated SWRO Membranes with Bacteria Isolated after Pre-Treatment in the Sea of Cortez. Coatings, 9(7), 462. https://doi.org/10.3390/coatings9070462

Bai, L., Liang, H., Crittenden, J., Qu, F., Ding, A., Ma, J., Du, X., Guo, S., & Li, G. (2015). Surface modification of UF membranes with functionalized MWCNTs to control membrane fouling by NOM fractions. Journal of Membrane Science, 492, 400–411. https://doi.org/10.1016/j.memsci.2015.06.006

Deng, H., Xu, Y., Zhu, B., Wei, X., Liu, F., & Cui, Z. (2008). Polyelectrolyte membranes prepared by dynamic self-assembly of poly (4-styrenesulfonic acid-co-maleic acid) sodium salt (PSSMA) for nanofiltration (I). Journal of Membrane Science, 323(1), 125–133. https://doi.org/10.1016/j.memsci.2008.06.028

El Batouti, M., Alharby, N. F., & Elewa, M. M. (2021). Review of New Approaches for Fouling Mitigation in Membrane Separation Processes in Water Treatment Applications. Separations, 9(1), 1. https://doi.org/10.3390/separations9010001

Ersahin, M. E., Ozgun, H., Dereli, R. K., Ozturk, I., Roest, K., & Van Lier, J. B. (2012). A review on dynamic membrane filtration: Materials, applications and future perspectives. Bioresource Technology, 122, 196–206. https://doi.org/10.1016/j.biortech.2012.03.086

Fan, L., Ma, Y., Su, Y., Zhang, R., Liu, Y., Zhang, Q., & Jiang, Z. (2015). Green coating by coordination of tannic acid and iron ions for antioxidant nanofiltration membranes. RSC Advances, 5(130), 107777–107784. https://doi.org/10.1039/C5RA23490E

Gao, J. (2016). Membrane Separation Technology for Wastewater Treatment and its Study Progress and Development Trend. Proceedings of the 2016 4th International Conference on Mechanical Materials and Manufacturing Engineering. 2016 4th International Conference on Mechanical Materials and Manufacturing Engineering, Wuhan, China. https://doi.org/10.2991/mmme-16.2016.202

Ge, J., Tian, J., Zhuo, L., Chen, H., & Tang, B. (2011). Fabrication of self-assembled iron oxide hierarchical nanostructures and their application in water treatment. Solid State Sciences, 13(8), 1554–1559. https://doi.org/10.1016/j.solidstatesciences.2011.05.021

Gui, M., Papp, J. K., Colburn, A. S., Meeks, N. D., Weaver, B., Wilf, I., & Bhattacharyya, D. (2015). Engineered iron/iron oxide functionalized membranes for selenium and other toxic metal removal from power plant scrubber water. Journal of Membrane Science, 488, 79–91. https://doi.org/10.1016/j.memsci.2015.03.089

Homayoonfal, M., Mehrnia, M. R., Shariaty-Niassar, M., Akbari, A., Ismail, A. F., & Matsuura, T. (2014). A comparison between blending and surface deposition methods for the preparation of iron oxide/polysulfone nanocomposite membranes. Desalination, 354, 125–142. https://doi.org/10.1016/j.desal.2014.09.031

Hu, Y., Wang, X. C., Ngo, H. H., Sun, Q., & Yang, Y. (2018). Anaerobic dynamic membrane bioreactor (AnDMBR) for wastewater treatment: A review. Bioresource Technology, 247, 1107–1118. https://doi.org/10.1016/j.biortech.2017.09.101

Jabbar, K. Q., Barzinjy, A. A., & Hamad, S. M. (2022). Iron oxide nanoparticles: Preparation methods, functions, adsorption and coagulation/flocculation in wastewater treatment. Environmental Nanotechnology, Monitoring & Management, 17, 100661. https://doi.org/10.1016/j.enmm.2022.100661

Kinfu, H. H., & Rahman, Md. M. (2023). Separation Performance of Membranes Containing Ultrathin Surface Coating of Metal-Polyphenol Network. Membranes, 13(5), 481. https://doi.org/10.3390/membranes13050481

Kumari, P., Alam, M., & Siddiqi, W. A. (2019). Usage of nanoparticles as adsorbents for waste water treatment: An emerging trend. Sustainable Materials and Technologies.

Kyesmen, P. I., Nombona, N., & Diale, M. (2021). Effects of Film Thickness and Coating Techniques on the Photoelectrochemical Behaviour of Hematite Thin Films. Frontiers in Energy Research, 9, 683293. https://doi.org/10.3389/fenrg.2021.683293

Lakhotia, S. R., Mukhopadhyay, M., & Kumari, P. (2019). Iron oxide (FeO) nanoparticles embedded thin-film nanocomposite nanofiltration (NF) membrane for water treatment. Separation and Purification Technology, 211, 98–107. https://doi.org/10.1016/j.seppur.2018.09.034

Li, L., Xu, G., & Yu, H. (2018). Dynamic Membrane Filtration: Formation, Filtration, Cleaning, and Applications. Chemical Engineering & Technology, 41(1), 7–18. https://doi.org/10.1002/ceat.201700095

Liu, D., Chen, Y., Tran, T. T., & Zhang, G. (2021). Facile and rapid assembly of high-performance tannic acid thin-film nanofiltration membranes via Fe3+ intermediated regulation and coordination. Separation and Purification Technology, 260, 118228. https://doi.org/10.1016/j.seppur.2020.118228

Lv, M., Feng, H., Ding, Y., Pan, S., & Qiao, H. (2022). Comparison of the formation, filtration performance, and structural characteristic of self-forming dynamic membranes under constant transmembrane pressure and constant filtration flux. Journal of Environmental Chemical Engineering, 10(6), 108691. https://doi.org/10.1016/j.jece.2022.108691

Ma, B., Yu, W., Jefferson, W. A., Liu, H., & Qu, J. (2015). Modification of ultrafiltration membrane with nanoscale zerovalent iron layers for humic acid fouling reduction. Water Research, 71, 140–149. https://doi.org/10.1016/j.watres.2014.12.034

Malczewska, B. (2021). Adsorption of Natural Organic Matter and Phosphorus from Surface Water Using Heated Aluminum Oxide (Predeposited) Dynamic Membrane Adsorber. Applied Sciences, 11(16), 7384. https://doi.org/10.3390/app11167384

Mishal, M., Alonizan, N. H., Hjiri, M., & Aida, M. S. (2019). Preparation of iron oxide nanoparticles doped with divalent metal: Application for heavy metal removal from waste water. 030009. https://doi.org/10.1063/1.5117040

Navratil, J. D. (1999). Wastewater Treatment Technology Based on Iron Oxides. In P. Misaelides, F. Macášek, T. J. Pinnavaia, & C. Colella (Eds.), Natural Microporous Materials in Environmental Technology (pp. 417–424). Springer Netherlands. https://doi.org/10.1007/978-94-011-4499-5_31

Othman, N. H., Alias, N. H., Fuzil, N. S., Marpani, F., Shahruddin, M. Z., Chew, C. M., David Ng, K. M., Lau, W. J., & Ismail, A. F. (2021). A Review on the Use of Membrane Technology Systems in Developing Countries. Membranes, 12(1), 30. https://doi.org/10.3390/membranes12010030

Parshetti, G. K., & Doong, R. (2012). Dechlorination of chlorinated hydrocarbons by bimetallic Ni/Fe immobilized on polyethylene glycol-grafted microfiltration membranes under anoxic conditions. Chemosphere, 86(4), 392–399. https://doi.org/10.1016/j.chemosphere.2011.10.028

Pollice, A., & Vergine, P. (2020). Self-forming dynamic membrane bioreactors (SFD MBR) for wastewater treatment: Principles and applications. In Current Developments in Biotechnology and Bioengineering (pp. 235–258). Elsevier. https://doi.org/10.1016/B978-0-12-819854-4.00010-1

Prabowo, A. (2015). Utilization of iron hydroxide as a pre-coat material for outside-inside ultrafiltration system. UNESCO-IHE Institute for Water Education, Delft, the Netherlands.

Rabajczyk, A., Zielecka, M., Cygańczuk, K., Pastuszka, Ł., & Jurecki, L. (2021). Nanometals-Containing Polymeric Membranes for Purification Processes. Materials, 14(3), 513. https://doi.org/10.3390/ma14030513

Raciny, I., Zodrow, K. R., Li, D., Li, Q., & Alvarez, P. J. J. (2011). Addition of a magnetite layer onto a polysulfone water treatment membrane to enhance virus removal. https://iwaponline.com/wst/article/63/10/2346/31576/Addition-of-a-magnetite-layer-onto-a-polysulfone

Sehasree Mohanta. (2021). Transmission Electron Microscopy. https://doi.org/10.13140/RG.2.2.21280.71681

Shabani, N., Javadi, A., Jafarizadeh-Malmiri, H., Mirzaie, H., & Sadeghi, J. (2021). Potential Application of Iron Oxide Nanoparticles Synthesized by Co-Precipitation Technology as a Coagulant for Water Treatment in Settling Tanks. Mining, Metallurgy & Exploration, 38(1), 269–276. https://doi.org/10.1007/s42461-020-00338-y

Shemer, H., Wald, S., & Semiat, R. (2023). Challenges and Solutions for Global Water Scarcity. Membranes, 13(6), 612. https://doi.org/10.3390/membranes13060612

Singh, N. J., Wareppam, B., Ghosh, S., Sahu, B. P., AjiKumar, P. K., Singh, H. P., Chakraborty, S., Pati, S. S., Oliveira, A. C., Barg, S., Garg, V. K., & Singh, L. H. (2020). Alkali-cation-incorporated and functionalized iron oxide nanoparticles for methyl blue removal/decomposition. Nanotechnology, 31(42), 425703. https://doi.org/10.1088/1361-6528/ab9af1

Song, Y., Fan, J.-B., & Wang, S. (2017). Recent progress in interfacial polymerization. Materials Chemistry Frontiers, 1(6), 1028–1040. https://doi.org/10.1039/C6QM00325G

Tian, H., Sun, L., Duan, X., Chen, X., Yu, T., Feng, C., & Zhang, Y. (2018). Effect of Phosphate on Ultrafiltration Membrane Performance After Predeposition of Fe 3 O 4. Environmental Engineering Science, 35(6), 654–661. https://doi.org/10.1089/ees.2016.0473

Usman, M., Belkasmi, A. I., Kastoyiannis, I. A., & Ernst, M. (2021). Pre‐deposited dynamic membrane adsorber formed of microscale conventional iron oxide‐based adsorbents to remove arsenic from water: Application study and mathematical modeling. Journal of Chemical Technology & Biotechnology, 96(6), 1504–1514. https://doi.org/10.1002/jctb.6728

Wu, L., Lin, Q., Liu, C., & Chen, W. (2019). A Stable Anti-Fouling Coating on PVDF Membrane Constructed of Polyphenol Tannic Acid, Polyethyleneimine and Metal Ion. Polymers, 11(12), 1975. https://doi.org/10.3390/polym11121975

Xiao, F., Ge, H., Wang, Y., Bian, S., Tong, Y., Gao, C., & Zhu, G. (2022). Novel thin-film composite membrane with polydopamine-modified polyethylene support and tannic acid-Fe3+ interlayer for forward osmosis applications. Journal of Membrane Science, 642, 119976. https://doi.org/10.1016/j.memsci.2021.119976

You, X., Wu, H., Zhang, R., Su, Y., Cao, L., Yu, Q., Yuan, J., Xiao, K., He, M., & Jiang, Z. (2019). Metal-coordinated sub-10 nm membranes for water purification. Nature Communications, 10(1), 4160. https://doi.org/10.1038/s41467-019-12100-0

Zhang, Y., & Zhao, H. (2017). Formation of phosphorylated Zr x Si 1−x O 2 /Al 2 O 3 self-assembled membrane for cleaning oily seawater. Journal of Membrane Science, 536, 28–36. https://doi.org/10.1016/j.memsci.2017.04.061


Ibrahim Maina Idriss
iimainakaina@unimad.edu.ng (Primary Contact)
Umar Abdullahi Isah
Daggash Muhammad Lawan
Kaka Goni Atiku
Zubair Hashmi
Idriss, I. M., Isah, U. A., Lawan, D. M., Atiku, K. G., & Hashmi, Z. (2024). Overview of Iron-Coated Dynamic Membrane for Water Treatment. AMPLITUDO : Journal of Science and Technology Innovation, 3(1), 1–8. https://doi.org/10.56566/amplitudo.v1i1.124

Article Details

Most read articles by the same author(s)