The Role of Bio-based Plasticizers in Mitigating Polymer Membranes Fragility and Brittleness
Abstract
The review article focuses on the potential of bio-based plasticizers to enhance the mechanical properties of polymer membranes, addressing the critical issues of fragility and brittleness. It highlights the environmental and health risks associated with traditional plasticizers like phthalates and also advocates for the adoption of sustainable and non-toxic bio-based alternatives. In doing so, it emphasizes the significant advancements in bio-based plasticizer research, aiming to stimulate further scientific inquiry into their application in membrane synthesis. By advocating for the adoption of green polymers, the article underscores the critical necessity for the development of environmentally benign and mechanically robust membrane technologies. These advancements hold considerable promise for a wide array of applications, notably within biomedical domains and separation processes, heralding a new era of sustainability and functionality in membrane technology.
Full text article
References
Abdelaal, F. B., Rowe, R. K., & Brachman, R. W. I. (2014). Brittle rupture of an aged HPDE geomembrane at local gravel indentations under simulated field conditions. Geosynthetics International, 21(1), 1–23. https://doi.org/10.1680/gein.13.00031
Abdulwahid, R. T., Aziz, S. B., & Kadir, M. F. Z. (2023). Environmentally friendly plasticized electrolyte based on chitosan (CS): Potato starch (PS) polymers for EDLC application: Steps toward the greener energy storage devices derived from biopolymers. Journal of Energy Storage, 67, 107636. https://doi.org/10.1016/j.est.2023.107636
Achari, D. D., Heggannavar, G. B., & Kariduraganavar, M. Y. (2020). Modification of highly brittle polystyrene sulfonic acid‐co‐maleic acid crosslinked sodium alginate membrane into flexible membranes by the incorporation of dibutyl phthalate as a plasticizer for pervaporation separation. Journal of Applied Polymer Science, 137(46), 49431. https://doi.org/10.1002/app.49431
Aiken, W., Alfrey, T., Janssen, A., & Mark, H. (1947). Creep behavior of plasticized vinylite VYNW. Journal of Polymer Science, 2(2), 178–198. https://doi.org/10.1002/pol.1947.120020206
Akbarzadeh, E., Shockravi, A., & Vatanpour, V. (2021). High performance compatible thiazole-based polymeric blend cellulose acetate membrane as selective CO2 absorbent and molecular sieve. Carbohydrate Polymers, 252, 117215. https://doi.org/10.1016/j.carbpol.2020.117215
Anadão, P., De Santis, H. S., Montes, R. R., & Wiebeck, H. (2018). Behavior of polysulfone composite and nanocomposite membranes under hypochlorite ageing. Materials Research Express, 5(5), 055006. https://doi.org/10.1088/2053-1591/aabf9c
Arhant, M., Gall, M. L., & Gac, P.-Y. L. (2022). Fracture test to accelerate the prediction of polymer embrittlement during aging – Case of PET hydrolysis. Polymer Degradation and Stability, 196, 109848. https://doi.org/10.1016/j.polymdegradstab.2022.109848
Arkas, M., Vardavoulias, M., Kythreoti, G., & Giannakoudakis, D. A. (2023). Dendritic Polymers in Tissue Engineering: Contributions of PAMAM, PPI PEG and PEI to Injury Restoration and Bioactive Scaffold Evolution. Pharmaceutics, 15(2), 524. https://doi.org/10.3390/pharmaceutics15020524
Bandehali, S., Sanaeepur, H., Ebadi Amooghin, A., Shirazian, S., & Ramakrishna, S. (2021). Biodegradable polymers for membrane separation. Separation and Purification Technology, 269, 118731. https://doi.org/10.1016/j.seppur.2021.118731
Bocqué, M., Voirin, C., Lapinte, V., Caillol, S., & Robin, J. (2016). Petro‐based and bio‐based plasticizers: Chemical structures to plasticizing properties. Journal of Polymer Science Part A: Polymer Chemistry, 54(1), 11–33. https://doi.org/10.1002/pola.27917
Brdlík, P., Novák, J., Borůvka, M., Běhálek, L., & Lenfeld, P. (2022). The Influence of Plasticizers and Accelerated Ageing on Biodegradation of PLA under Controlled Composting Conditions. Polymers, 15(1), 140. https://doi.org/10.3390/polym15010140
Cai, D.-L., Yue, X., Hao, B., & Ma, P.-C. (2020). A sustainable poly(vinyl chloride) plasticizer derivated from waste cooking oil. Journal of Cleaner Production, 274, 122781. https://doi.org/10.1016/j.jclepro.2020.122781
Cao, P.-F., Li, B., Hong, T., Xing, K., Voylov, D. N., Cheng, S., Yin, P., Kisliuk, A., Mahurin, S. M., Sokolov, A. P., & Saito, T. (2017). Robust and Elastic Polymer Membranes with Tunable Properties for Gas Separation. ACS Applied Materials & Interfaces, 9(31), 26483–26491. https://doi.org/10.1021/acsami.7b09017
Chaos, A., Sangroniz, A., Gonzalez, A., Iriarte, M., Sarasua, J.-R., Del Río, J., & Etxeberria, A. (2019). Tributyl citrate as an effective plasticizer for biodegradable polymers: Effect of plasticizer on free volume and transport and mechanical properties: Tributyl citrate as an effective plasticizer for biodegradable polymers. Polymer International, 68(1), 125–133. https://doi.org/10.1002/pi.5705
Charlton, A. J., Lian, B., Blandin, G., Leslie, G., & Le-Clech, P. (2020). Impact of FO Operating Pressure and Membrane Tensile Strength on Draw-Channel Geometry and Resulting Hydrodynamics. Membranes, 10(5), 111. https://doi.org/10.3390/membranes10050111
Cindradewi, A. W., Bandi, R., Park, C.-W., Park, J.-S., Lee, E.-A., Kim, J.-K., Kwon, G.-J., Han, S.-Y., & Lee, S.-H. (2021). Preparation and Characterization of Cellulose Acetate Film Reinforced with Cellulose Nanofibril. Polymers, 13(17), 2990. https://doi.org/10.3390/polym13172990
Costanza, V., Bonanomi, L., Moscato, G., Wang, L., Choi, Y. S., & Daraio, C. (2019). Effect of glycerol on the mechanical and temperature-sensing properties of pectin films. Applied Physics Letters, 115(19), 193702. https://doi.org/10.1063/1.5121710
Cui, L., Imre, B., Tátraaljai, D., & Pukánszky, B. (2020). Physical ageing of Poly(Lactic acid): Factors and consequences for practice. Polymer, 186, 122014. https://doi.org/10.1016/j.polymer.2019.122014
Dai, W., Li, X., Wu, Y., Zang, K., Yuan, Z., Zeng, J., Jian, J., & Zhou, H. (2022). Improvement of the functional properties of cellulose acetate film by incorporating with glycerol and n-propanol [Preprint]. In Review. https://doi.org/10.21203/rs.3.rs-1579691/v1
Dong, X., Lu, D., Harris, T. A. L., & Escobar, I. C. (2021). Polymers and Solvents Used in Membrane Fabrication: A Review Focusing on Sustainable Membrane Development. Membranes, 11(5), 309. https://doi.org/10.3390/membranes11050309
Dreux, X., Majesté, J.-C., Carrot, C., Argoud, A., & Vergelati, C. (2019). Viscoelastic behaviour of cellulose acetate/triacetin blends by rheology in the melt state. Carbohydrate Polymers, 222, 114973. https://doi.org/10.1016/j.carbpol.2019.114973
Faikrua, A., Jeenapongsa, R., Sila-asna, M., & Viyoch, J. (2009). Properties of -glycerol phosphate/collagen/chitosan blend scaffolds for application in skin tissue engineering. ScienceAsia, 35(3), 247. https://doi.org/10.2306/scienceasia1513-1874.2009.35.247
Farah, S., Anderson, D. G., & Langer, R. (2016). Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Advanced Drug Delivery Reviews, 107, 367–392. https://doi.org/10.1016/j.addr.2016.06.012
Feng, G., Ma, Y., Zhang, M., Jia, P., Liu, C., & Zhou, Y. (2019). Synthesis of Bio-base Plasticizer Using Waste Cooking Oil and Its Performance Testing in Soft Poly(vinyl chloride) Films. Journal of Bioresources and Bioproducts, 4(2), 99–110. https://doi.org/10.21967/jbb.v4i2.214
Feng, Z. (2017). Understanding aging impact on membrane structure and seasonal variation of natural organic matter in water from a membrane drinking water treatment plant. Lakehead University.
Fox, T. G., & Flory, P. J. (1950). Second‐Order Transition Temperatures and Related Properties of Polystyrene. I. Influence of Molecular Weight. Journal of Applied Physics, 21(6), 581–591. https://doi.org/10.1063/1.1699711
Galán, M. P. C. (2020). Development of mono and multilayer membranes of polypropylene and ethylene-propylene copolymers via cast film extrusion and stretching. Universitat Politècnica de Catalunya – Barcelona Tech.
Gao, C., Zhang, X., Li, Z., Han, S., Liu, Y., & Wang, C. (2016). Application of poly(butylenes succinate) as migration resistant plasticizer for poly(vinyl chloride). Proceedings of the 2016 International Conference on Innovative Material Science and Technology (IMST 2016). 2016 International Conference on Innovative Material Science and Technology (IMST 2016), Shenzhen, China. https://doi.org/10.2991/imst-16.2016.44
Ghosh, B., Bhattacharya, D., & Mukhopadhyay, M. (2021). Fabrication of natural polysaccharide based hydrogel with utility to entrap pollutants. Journal of Physics: Conference Series, 1797(1), 012060. https://doi.org/10.1088/1742-6596/1797/1/012060
Guo, R., Sanders, D. F., Smith, Z. P., Freeman, B. D., Paul, D. R., & McGrath, J. E. (2013). Synthesis and characterization of thermally rearranged (TR) polymers: Effect of glass transition temperature of aromatic poly(hydroxyimide) precursors on TR process and gas permeation properties. Journal of Materials Chemistry A, 1(19), 6063. https://doi.org/10.1039/c3ta10261k
Harussani, M. M., Sapuan, S. M., Firdaus, A. H. M., El-Badry, Y. A., Hussein, E. E., & El-Bahy, Z. M. (2021). Determination of the Tensile Properties and Biodegradability of Cornstarch-Based Biopolymers Plasticized with Sorbitol and Glycerol. Polymers, 13(21), 3709. https://doi.org/10.3390/polym13213709
Howell, B. A., & Sun, W. (2018). Biobased Plasticizers from Tartaric Acid, an Abundantly Available, Renewable Material. Industrial & Engineering Chemistry Research, acs.iecr.8b03486. https://doi.org/10.1021/acs.iecr.8b03486
Jagarlapudi, S. S., Cross, H. S., Das, T., & Goddard, W. A. (2023). Thermomechanical Properties of Nontoxic Plasticizers for Polyvinyl Chloride Predicted from Molecular Dynamics Simulations. ACS Applied Materials & Interfaces, 15(20), 24858–24867. https://doi.org/10.1021/acsami.3c02354
Jamarani, R., Erythropel, H., Nicell, J., Leask, R., & Marić, M. (2018). How Green is Your Plasticizer? Polymers, 10(8), 834. https://doi.org/10.3390/polym10080834
Javed, A. (2015). Effects of plasticizing and crosslinking on the mechanical and barrier properties of coatings based on blends of starch and poly(vinyl alcohol). Faculty of Health, Science and Technology, Chemical Engineering, Karlstads universitet.
Jost, V., & Langowski, H.-C. (2015). Effect of different plasticisers on the mechanical and barrier properties of extruded cast PHBV films. European Polymer Journal, 68, 302–312. https://doi.org/10.1016/j.eurpolymj.2015.04.012
Kaczorowska, M. A. (2022). The Use of Polymer Inclusion Membranes for the Removal of Metal Ions from Aqueous Solutions—The Latest Achievements and Potential Industrial Applications: A Review. Membranes, 12(11), 1135. https://doi.org/10.3390/membranes12111135
Kadirkhan, F., Goh, P. S., Ismail, A. F., Wan Mustapa, W. N. F., Halim, M. H. M., Soh, W. K., & Yeo, S. Y. (2022). Recent Advances of Polymeric Membranes in Tackling Plasticization and Aging for Practical Industrial CO2/CH4 Applications—A Review. Membranes, 12(1), 71. https://doi.org/10.3390/membranes12010071
Karim, S. S., Farrukh, S., Hussain, A., Younas, M., & Noor, T. (2022). The influence of polymer concentration on the morphology and mechanical properties of asymmetric polyvinyl alcohol (PVA) membrane for O 2 /N 2 separation. Polymers and Polymer Composites, 30, 096739112210900. https://doi.org/10.1177/09673911221090053
Khattra, N. S., Hannach, M. E., Wong, K. H., Lauritzen, M., & Kjeang, E. (2020). Estimating the Durability of Polymer Electrolyte Fuel Cell Membranes Using a Fracture Percolation Model. Journal of The Electrochemical Society, 167(1), 013528. https://doi.org/10.1149/2.0282001JES
Kirkpatrick, A. (1940). Some Relations Between Molecular Structure and Plasticizing Effect. Journal of Applied Physics, 11(4), 255–261. https://doi.org/10.1063/1.1712768
Koyama, H., Mori, T., Nagai, K., & Shimamoto, S. (2023). Exploration of advanced cellulosic material for membrane filtration with outstanding antifouling property. RSC Advances, 13(11), 7490–7502. https://doi.org/10.1039/D2RA08165B
Kudahettige-Nilsson, R. L., Ullsten, H., & Henriksson, G. (2018). Plastic composites made from glycerol, citric acid, and forest components. BioResources, 13(3), 6600–6612. https://doi.org/10.15376/biores.13.3.6600-6612
Kumar, S. (2019). Recent Developments of Biobased Plasticizers and Their Effect on Mechanical and Thermal Properties of Poly(vinyl chloride): A Review. Industrial & Engineering Chemistry Research, 58(27), 11659–11672. https://doi.org/10.1021/acs.iecr.9b02080
Lau, S., Kahar, A. W. M., & Yusrina, M. D. (2021). Effect of glycerol as plasticizer on the tensile properties of chitosan/microcrystalline cellulose films. 020204. https://doi.org/10.1063/5.0044825
Li, G., Zhu, D., Jia, W., & Zhang, F. (2021). Analysis of the aging mechanism and life evaluation of elastomers in simulated proton exchange membrane fuel cell environments. E-Polymers, 21(1), 921–929. https://doi.org/10.1515/epoly-2021-0078
Lim, H., & Hoag, S. W. (2013). Plasticizer Effects on Physical–Mechanical Properties of Solvent Cast Soluplus® Films. AAPS PharmSciTech, 14(3), 903–910. https://doi.org/10.1208/s12249-013-9971-z
Lim, H. J., Kim, G., & Yun, G. J. (2023). Durability and Performance Analysis of Polymer Electrolyte Membranes for Hydrogen Fuel Cells by a Coupled Chemo-mechanical Constitutive Model and Experimental Validation. ACS Applied Materials & Interfaces, 15(20), 24257–24270. https://doi.org/10.1021/acsami.2c15451
Liu, J., Yuan, R., Sang, Q., Dang, L., Gao, L., Xu, B., & Xu, S. (2023). Effect of acetylated citrate plasticizer on mechanical properties of poly(vinyl chloride). Materials Chemistry and Physics, 295, 127068. https://doi.org/10.1016/j.matchemphys.2022.127068
Liu, Q., Lv, R., Na, B., & Ju, Y. (2015). Robust polylactide nanofibrous membranes by gelation/crystallization from solution. RSC Advances, 5(70), 57076–57081. https://doi.org/10.1039/C5RA08420B
Mancilla-Rico, A., De Gyves, J., & Rodríguez De San Miguel, E. (2021). Structural Characterization of the Plasticizers’ Role in Polymer Inclusion Membranes Used for Indium (III) Transport Containing IONQUEST® 801 as Carrier. Membranes, 11(6), 401. https://doi.org/10.3390/membranes11060401
Mansor, E. S., Abdallah, H., & Shaban, A. M. (2020). Fabrication of high selectivity blend membranes based on poly vinyl alcohol for crystal violet dye removal. Journal of Environmental Chemical Engineering, 8(3), 103706. https://doi.org/10.1016/j.jece.2020.103706
Marcilla, A., & Beltrán, M. (2012). MECHANISMS OF PLASTICIZERS ACTION. In Handbook of Plasticizers (pp. 119–133). Elsevier. https://doi.org/10.1016/B978-1-895198-50-8.50007-2
Mataram, A., Nasution, S., Wijaya, M. L., & Septano, G. D. (2017). Physical and mechanical properties of membrane Polyacrylonitrile. MATEC Web of Conferences, 101, 01010. https://doi.org/10.1051/matecconf/201710101010
Merlo, F., Profumo, A., Fontàs, C., & Anticó, E. (2022). Preparation of new polymeric phases for thin-film liquid phase microextraction (TF-LPME) of selected organic pollutants. Microchemical Journal, 175, 107120. https://doi.org/10.1016/j.microc.2021.107120
Messmer, D., Bertran, O., Kissner, R., Alemán, C., & Schlüter, A. D. (2019). Main-chain scission of individual macromolecules induced by solvent swelling. Chemical Science, 10(24), 6125–6139. https://doi.org/10.1039/C9SC01639B
Milescu, R. A., Zhenova, A., Vastano, M., Gammons, R., Lin, S., Lau, C. H., Clark, J. H., McElroy, C. R., & Pellis, A. (2021). Polymer Chemistry Applications of Cyrene and its Derivative Cygnet 0.0 as Safer Replacements for Polar Aprotic Solvents. ChemSusChem, 14(16), 3367–3381. https://doi.org/10.1002/cssc.202101125
Naser, A. Z., Deiab, I., Defersha, F., & Yang, S. (2021). Expanding Poly(lactic acid) (PLA) and Polyhydroxyalkanoates (PHAs) Applications: A Review on Modifications and Effects. Polymers, 13(23), 4271. https://doi.org/10.3390/polym13234271
Ngobeni, R., Sadare, O., & Daramola, M. O. (2021). Synthesis and Evaluation of HSOD/PSF and SSOD/PSF Membranes for Removal of Phenol from Industrial Wastewater. Polymers, 13(8), 1253. https://doi.org/10.3390/polym13081253
Nosal, H., Moser, K., Warzała, M., Holzer, A., Stańczyk, D., & Sabura, E. (2021). Selected Fatty Acids Esters as Potential PHB-V Bioplasticizers: Effect on Mechanical Properties of the Polymer. Journal of Polymers and the Environment, 29(1), 38–53. https://doi.org/10.1007/s10924-020-01841-5
Okolišan, D., Vlase, G., Vlase, T., & Avram, C. (2022). Preliminary Study of κ-Carrageenan Based Membranes for Anti-Inflammatory Drug Delivery. Polymers, 14(20), 4275. https://doi.org/10.3390/polym14204275
Omar Anis Ainaa, Mohd Hanafi Mohd Hafidzal, Razak Nurul Hanim, Ibrahim Asriana, & Ab Razak Nurul Afwanisa. (2021). A Best-Evidence Review of Bio-based Plasticizer and the Effects on the Mechanical Properties of PLA. Chemical Engineering Transactions, 89, 241–246. https://doi.org/10.3303/CET2189041
Pantuso, E., Filpo, G., & Nicoletta, F. P. (2019). Light‐Responsive Polymer Membranes. Advanced Optical Materials, 7(16), 1900252. https://doi.org/10.1002/adom.201900252
Platzer, N. (1982). The technology of plasticizers, J. Kern Sears and Joseph R. Darby, SPE Monograph Series, Wiley, New York, 1982, 1166 pp. Price: $130.00. Journal of Polymer Science: Polymer Letters Edition, 20(8), 459–459. https://doi.org/10.1002/pol.1982.130200810
Rahman, M. A. A., Sy Mohamad, S. F., & Mohamad, S. (2023). Development and Characterization of Bio-Composite Films Made from Bacterial Cellulose Derived from Oil Palm Frond Juice Fermentation, Chitosan and Glycerol. Trends in Sciences, 20(8), 4919. https://doi.org/10.48048/tis.2023.4919
Raut, P., Li, S., Chen, Y.-M., Zhu, Y., & Jana, S. C. (2019). Strong and Flexible Composite Solid Polymer Electrolyte Membranes for Li-Ion Batteries. ACS Omega, 4(19), 18203–18209. https://doi.org/10.1021/acsomega.9b00885
Rehman, A., Jahan, Z., Sher, F., Noor, T., Khan Niazi, M. B., Akram, M. A., & Sher, E. K. (2022). Cellulose acetate based sustainable nanostructured membranes for environmental remediation. Chemosphere, 307, 135736. https://doi.org/10.1016/j.chemosphere.2022.135736
Righetti, G. I. C., Nasti, R., Beretta, G., Levi, M., Turri, S., & Suriano, R. (2023). Unveiling the Hidden Properties of Tomato Peels: Cutin Ester Derivatives as Bio-Based Plasticizers for Polylactic Acid. Polymers, 15(8), 1848. https://doi.org/10.3390/polym15081848
Sadeghi, A., Mousavi, S. M., Saljoughi, E., & Kiani, S. (2021). Biodegradable membrane based on polycaprolactone/polybutylene succinate: Characterization and performance evaluation in wastewater treatment. Journal of Applied Polymer Science, 138(18), 50332. https://doi.org/10.1002/app.50332
Salahuddin, Z., Farrukh, S., & Hussain, A. (2018). Optimization study of polyethylene glycol and solvent system for gas permeation membranes. International Journal of Polymer Analysis and Characterization, 23(5), 483–492. https://doi.org/10.1080/1023666X.2018.1485613
Sanyang, M., Sapuan, S., Jawaid, M., Ishak, M., & Sahari, J. (2015). Effect of Plasticizer Type and Concentration on Tensile, Thermal and Barrier Properties of Biodegradable Films Based on Sugar Palm (Arenga pinnata) Starch. Polymers, 7(6), 1106–1124. https://doi.org/10.3390/polym7061106
Sen Gupta, R., Samantaray, P. K., & Bose, S. (2023). Going beyond Cellulose and Chitosan: Synthetic Biodegradable Membranes for Drinking Water, Wastewater, and Oil–Water Remediation. ACS Omega, acsomega.3c01699. https://doi.org/10.1021/acsomega.3c01699
Sinisi, A., Degli Esposti, M., Braccini, S., Chiellini, F., Guzman-Puyol, S., Heredia-Guerrero, J. A., Morselli, D., & Fabbri, P. (2021). Levulinic acid-based bioplasticizers: A facile approach to enhance the thermal and mechanical properties of polyhydroxyalkanoates. Materials Advances, 2(24), 7869–7880. https://doi.org/10.1039/D1MA00833A
Syafiq, R. M. O., Sapuan, S. M., Zuhri, M. Y. M., Othman, S. H., & Ilyas, R. A. (2022). Effect of plasticizers on the properties of sugar palm nanocellulose/cinnamon essential oil reinforced starch bionanocomposite films. Nanotechnology Reviews, 11(1), 423–437. https://doi.org/10.1515/ntrev-2022-0028
Tarique, J., Sapuan, S. M., & Khalina, A. (2021). Effect of glycerol plasticizer loading on the physical, mechanical, thermal, and barrier properties of arrowroot (Maranta arundinacea) starch biopolymers. Scientific Reports, 11(1), 13900. https://doi.org/10.1038/s41598-021-93094-y
Teixeira, S. C., Silva, R. R. A., De Oliveira, T. V., Stringheta, P. C., Pinto, M. R. M. R., & Soares, N. D. F. F. (2021). Glycerol and triethyl citrate plasticizer effects on molecular, thermal, mechanical, and barrier properties of cellulose acetate films. Food Bioscience, 42, 101202. https://doi.org/10.1016/j.fbio.2021.101202
Tian, J., Cao, Z., Qian, S., Xia, Y., Zhang, J., Kong, Y., Sheng, K., Zhang, Y., Wan, Y., & Takahashi, J. (2022). Improving tensile strength and impact toughness of plasticized poly(lactic acid) biocomposites by incorporating nanofibrillated cellulose. Nanotechnology Reviews, 11(1), 2469–2482. https://doi.org/10.1515/ntrev-2022-0142
Tyagi, V., & Bhattacharya, B. (2019). Role of plasticizers in bioplastics. MOJ Food Processing & Technology, 7(4), 128–130. https://doi.org/10.15406/mojfpt.2019.07.00231
Wang, S., Li, F., Dai, X., Wang, C., Lv, X., Waterhouse, G. I. N., Fan, H., & Ai, S. (2020). Highly flexible and stable carbon nitride/cellulose acetate porous films with enhanced photocatalytic activity for contaminants removal from wastewater. Journal of Hazardous Materials, 384, 121417. https://doi.org/10.1016/j.jhazmat.2019.121417
Williams, H. (2022). Measuring Young’s modulus with a tensile tester. Physics Education, 57(2), 025016. https://doi.org/10.1088/1361-6552/ac3f75
Yang, Y., Huang, J., Zhang, R., & Zhu, J. (2017). Designing bio-based plasticizers: Effect of alkyl chain length on plasticization properties of isosorbide diesters in PVC blends. Materials & Design, 126, 29–36. https://doi.org/10.1016/j.matdes.2017.04.005
Yuan, Y., Zhang, Q., Luo, X., Huang, Y., & Gu, R. (2023). The tensile strength test and result comparison of new transparent architecture membrane material STFE. Journal of Asian Architecture and Building Engineering, 1–16. https://doi.org/10.1080/13467581.2023.2257272
Zafar, R., Lee, W., & Kwak, S.-Y. (2022). A facile strategy for enhancing tensile toughness of poly(lactic acid) (PLA) by blending of a cellulose bio-toughener bearing a highly branched polycaprolactone. European Polymer Journal, 175, 111376. https://doi.org/10.1016/j.eurpolymj.2022.111376
Zhang, Z., Jiang, P., Liu, D., Feng, S., Zhang, P., Wang, Y., Fu, J., & Agus, H. (2021). Research progress of novel bio-based plasticizers and their applications in poly(vinyl chloride). Journal of Materials Science, 56(17), 10155–10182. https://doi.org/10.1007/s10853-021-05934-x
Zhu, H., Yang, J., Wu, M., Wu, Q., Liu, J., & Zhang, J. (2021). Biobased Plasticizers from Tartaric Acid: Synthesis and Effect of Alkyl Chain Length on the Properties of Poly(vinyl chloride). ACS Omega, 6(20), 13161–13169. https://doi.org/10.1021/acsomega.1c01006
Zuber, S. A. N. A., Rusli, A., & Ismail, H. (2019). Effectiveness of triacetin and triethyl citrate as plasticizer in polyvinyl alcohol. Materials Today: Proceedings, 17, 560–567. https://doi.org/10.1016/j.matpr.2019.06.335
Authors
Copyright (c) 2024 Ibrahim Maina Idriss
This work is licensed under a Creative Commons Attribution 4.0 International License.