Exploring Biomass Conversion Technologies: From Raw Materials to Valuable Products

Syed O Ali (1), Zubair Hashmi (2), Tanzeel Usman (3), Atta Muhammad (4), Ibrahim Maina Idriss (5), Syed Hassan Abbas (6), Mubashir Hassan (7)
(1) University of New Brunswick, Canada,
(2) Dawood University of Engineering and Technology, Pakistan,
(3) Dawood University of Engineering and Technology, Pakistan,
(4) Dawood University of Engineering and Technology, Pakistan,
(5) University of Maiduguri, Nigeria,
(6) Dawood University of Engineering and Technology, Pakistan,
(7) Chemical and Petroleum Engineering, University of Calgary, Canada

Abstract

The global demand for eco-friendly energy has propelled biomass into the spotlight. This report delves into biomass conversion technologies, including biochemical and thermochemical processes, with a focus on hydrothermal conversion. It highlights challenges related to cost-effectiveness and commercial viability. Thermochemical conversion processes, such as pyrolysis and combustion, unlock energy from organic matter. Hydrothermal processing's three approaches and their efficiency are discussed, particularly in biofuels, chemicals, and biochar production. The review analyzes hydrothermal gasification, emphasizing its efficiency and minimal processing time. Carbon and hydrogen gasification efficiencies are crucial in determining gas yields in supercritical conditions. Yield distribution and the influence of feedstock nature and composition on product yield are examined. In conclusion, this report offers insights into biomass conversion technologies and their sustainability for energy and chemical needs.

Full text article

Generated from XML file

References

Adschiri, T., Kanazawa, K., & Arai, K. (1992). Rapid and Continuous Hydrothermal Synthesis of Boehmite Particles in Subcritical and Supercritical Water. Journal of the American Ceramic Society, 75(9), 2615–2618. https://doi.org/10.1111/j.1151-2916.1992.tb05625.x

Allangawi, A., Alzaimoor, E. F. H., Shanaah, H. H., Mohammed, H. A., Saqer, H., El-Fattah, A. A., & Kamel, A. H. (2023). Carbon Capture Materials in Post-Combustion: Adsorption and Absorption-Based Processes. C, 9(1), 17. https://doi.org/10.3390/c9010017

Arun, J., Gopinath, K. P., Vo, D. V. N., SundarRajan, P. S., & Swathi, M. (2020). Co-hydrothermal gasification of Scenedesmus sp. with sewage sludge for bio-hydrogen production using novel solid catalyst derived from carbon-zinc battery waste. Bioresource Technology Reports, 11(May), 100459. https://doi.org/10.1016/j.biteb.2020.100459

Awasthi, M. K., Sar, T., Gowd, S. C., Rajendran, K., Kumar, V., Sarsaiya, S., Li, Y., Sindhu, R., Binod, P., Zhang, Z., Pandey, A., & Taherzadeh, M. J. (2023). A comprehensive review on thermochemical, and biochemical conversion methods of lignocellulosic biomass into valuable end product. Fuel, 342, 127790. https://doi.org/10.1016/j.fuel.2023.127790

Bridgwater, A. V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy, 38, 68–94. https://doi.org/10.1016/j.biombioe.2011.01.048

Brown, T. M., Duan, P., & Savage, P. E. (2010). Hydrothermal liquefaction and gasification of Nannochloropsis sp. Energy and Fuels, 24(6), 3639–3646. https://doi.org/10.1021/ef100203u

Cai, J., Xu, D., Dong, Z., Yu, X., Yang, Y., Banks, S. W., & Bridgwater, A. V. (2018). Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: Case study of corn stalk. Renewable and Sustainable Energy Reviews, 82(April), 2705–2715. https://doi.org/10.1016/j.rser.2017.09.113

D., L.-P., M. Prado, J., P., T.-M., Forster-Carneiro, T., & Angela A. Meireles, M. (2015). Supercritical Water Gasification of Biomass for Hydrogen Production: Variable of the Process. Food and Public Health, 6(3), 92–101. https://doi.org/10.5923/j.fph.20150503.05

Davis, R., & Bartling, A. (2023). Biochemical Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels and Products: 2022 State of Technology and Future Research. https://doi.org/10.2172/1962809

Elliott, D. C., Biller, P., Ross, A. B., Schmidt, A. J., & Jones, S. B. (2015). Hydrothermal liquefaction of biomass: Developments from batch to continuous process. Bioresource Technology, 178, 147–156. https://doi.org/10.1016/j.biortech.2014.09.132

French, R., & Czernik, S. (2010). Catalytic pyrolysis of biomass for biofuels production. Fuel Processing Technology, 91(1), 25–32. https://doi.org/10.1016/j.fuproc.2009.08.011

Funke, A., & Ziegler, F. (2011). Heat of reaction measurements for hydrothermal carbonization of biomass. Bioresource Technology, 102(16), 7595–7598. https://doi.org/10.1016/j.biortech.2011.05.016

Galhano dos Santos, R., Bordado, J. C., & Mateus, M. M. (2018). Estimation of HHV of lignocellulosic biomass towards hierarchical cluster analysis by Euclidean’s distance method. Fuel, 221(February), 72–77. https://doi.org/10.1016/j.fuel.2018.02.092

Gollakota, A. R. K., Kishore, N., & Gu, S. (2018). A review on hydrothermal liquefaction of biomass. Renewable and Sustainable Energy Reviews, 81(August 2016), 1378–1392. https://doi.org/10.1016/j.rser.2017.05.178

Güngören Madenoğlu, T., Yıldırır, E., Sağlam, M., Yüksel, M., & Ballice, L. (2014). Improvement in hydrogen production from hard-shell nut residues by catalytic hydrothermal gasification. The Journal of Supercritical Fluids, 95, 339–347. https://doi.org/10.1016/j.supflu.2014.09.033

Hashaikeh, R., Fang, Z., Butler, I. S., & Kozinski, J. A. (2005). Sequential hydrothermal gasification of biomass to hydrogen. Proceedings of the Combustion Institute, 30 II(2), 2231–2237. https://doi.org/10.1016/j.proci.2004.08.196

Heeley, K., Orozco, R. L., Macaskie, L. E., Love, J., & Al-Duri, B. (2023). Supercritical water gasification of microalgal biomass for hydrogen production-A review. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2023.08.081

Kabir, A. S., Li, H., Yuan, H. Z., Kuboki, T., & Xu, C. (Charles). (2019). Effects of de-polymerized lignin content on thermo-oxidative and thermal stability of polyethylene. Journal of Analytical and Applied Pyrolysis, 140(April), 413–422. https://doi.org/10.1016/j.jaap.2019.04.023

Kabyemela, B. M., Adschiri, T., Malaluan, R. M., & Arai, K. (1997). Kinetics of Glucose Epimerization and Decomposition in Subcritical.pdf. Ind. Eng. Chem. Res., 36, 1552–1558.

Kipçak, E., Söǧüt, O. Ö., & Akgün, M. (2011). Hydrothermal gasification of olive mill wastewater as a biomass source in supercritical water. Journal of Supercritical Fluids, 57(1), 50–57. https://doi.org/10.1016/j.supflu.2011.02.006

Kong, L., Li, G., Zhang, B., He, W., & Wang, H. (2008). Hydrogen production from biomass wastes by hydrothermal gasification. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 30(13), 1166–1178. https://doi.org/10.1080/15567030701258246

Kruse, A., Bernolle, P., Dahmen, N., Dinjus, E., & Maniam, P. (2010). Hydrothermal gasification of biomass: Consecutive reactions to long-living intermediates. Energy and Environmental Science, 3(1), 136–143. https://doi.org/10.1039/b915034j

Kumar, B., Bhardwaj, N., Agrawal, K., Chaturvedi, V., & Verma, P. (2020). Current perspective on pretreatment technologies using lignocellulosic biomass: An emerging biorefinery concept. Fuel Processing Technology, 199(July 2019). https://doi.org/10.1016/j.fuproc.2019.106244

Kurian, V., Gill, M., Dhakal, B., & Kumar, A. (2022). Recent trends in the pyrolysis and gasification of lignocellulosic biomass. In Biofuels and Bioenergy (pp. 511–552). Elsevier. https://doi.org/10.1016/B978-0-323-90040-9.00028-X

Li, S., Jiang, Y., Snowden-Swan, L. J., Askander, J. A., Schmidt, A. J., & Billing, J. M. (2021). Techno-economic uncertainty analysis of wet waste-to-biocrude via hydrothermal liquefaction. Applied Energy, 283(December 2020), 116340. https://doi.org/10.1016/j.apenergy.2020.116340

Libra, J. A., Ro, K. S., Kammann, C., Funke, A., Berge, N. D., Neubauer, Y., Titirici, M. M., Fühner, C., Bens, O., Kern, J., & Emmerich, K. H. (2011). Hydrothermal carbonization of biomass residuals: A comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels, 2(1), 71–106. https://doi.org/10.4155/bfs.10.81

Liu, S., Abrahamson, L. P., & Scott, G. M. (2012). Biorefinery: Ensuring biomass as a sustainable renewable source of chemicals, materials, and energy. Biomass and Bioenergy, 39, 1–4. https://doi.org/10.1016/j.biombioe.2010.12.042

Ljunggren, M., Wallberg, O., & Zacchi, G. (2011). Techno-economic comparison of a biological hydrogen process and a 2nd generation ethanol process using barley straw as feedstock. Bioresource Technology, 102(20), 9524–9531. https://doi.org/10.1016/j.biortech.2011.06.096

Lu, Y., Guo, L., Zhang, X., & Ji, C. (2012). Hydrogen production by supercritical water gasification of biomass: Explore the way to maximum hydrogen yield and high carbon gasification efficiency. International Journal of Hydrogen Energy, 37(4), 3177–3185. https://doi.org/10.1016/j.ijhydene.2011.11.064

Luterbacher, J. S., Froling, M., Vogel, F., Marechal, F., & Tester, J. W. (2009). Hydrothermal gasification of waste biomass: Process design and life cycle asessment. Environmental Science and Technology, 43(5), 1578–1583. https://doi.org/10.1021/es801532f

Manikandan, S., Vickram, S., Sirohi, R., Subbaiya, R., Krishnan, R. Y., Karmegam, N., Sumathijones, C., Rajagopal, R., Chang, S. W., Ravindran, B., & Awasthi, M. K. (2023). Critical review of biochemical pathways to transformation of waste and biomass into bioenergy. Bioresource Technology, 372, 128679. https://doi.org/10.1016/j.biortech.2023.128679

Matsumura, Y., Harada, M., Nagata, K., & Kikuchi, Y. (2006). Effect of heating rate of biomass feedstock on carbon gasification efficiency in supercritical water gasification. Chemical Engineering Communications, 193(5), 649–659. https://doi.org/10.1080/00986440500440157

Mishra, K., Siwal, S. S., Nayaka, S. C., Guan, Z., & Thakur, V. K. (2023). Waste-to-chemicals: Green solutions for bioeconomy markets. Science of The Total Environment, 887, 164006. https://doi.org/10.1016/j.scitotenv.2023.164006

Nhuchhen, D. R., & Afzal, M. T. (2017). HHV predicting correlations for torrefied biomass using proximate and ultimate analyses. Bioengineering, 4(1). https://doi.org/10.3390/bioengineering4010007

Nussbaumer, T. (2003). Combustion and Co-combustion of Biomass: Fundamentals, Technologies, and Primary Measures for Emission Reduction. Energy and Fuels, 17(6), 1510–1521. https://doi.org/10.1021/ef030031q

Paida, V. R., Brilman, D. W. F., & Kersten, S. R. A. (2019). Hydrothermal gasification of sorbitol: H2 optimisation at high carbon gasification efficiencies. Chemical Engineering Journal, 358(June 2018), 351–361. https://doi.org/10.1016/j.cej.2018.10.008

Paz-Ferreiro, J., Nieto, A., Méndez, A., Askeland, M. P. J., & Gascó, G. (2018). Biochar from biosolids pyrolysis: A review. International Journal of Environmental Research and Public Health, 15(5). https://doi.org/10.3390/ijerph15050956

Reddy, S. N., Nanda, S., Dalai, A. K., & Kozinski, J. A. (2014). Supercritical water gasification of biomass for hydrogen production. International Journal of Hydrogen Energy, 39(13), 6912–6926. https://doi.org/10.1016/j.ijhydene.2014.02.125

Reza, M. T., Wirth, B., Lüder, U., & Werner, M. (2014). Behavior of selected hydrolyzed and dehydrated products during hydrothermal carbonization of biomass. Bioresource Technology, 169, 352–361. https://doi.org/10.1016/j.biortech.2014.07.010

Safari, F., Javani, N., & Yumurtaci, Z. (2018). Hydrogen production via supercritical water gasification of almond shell over algal and agricultural hydrochars as catalysts. International Journal of Hydrogen Energy, 43(2), 1071–1080. https://doi.org/10.1016/j.ijhydene.2017.05.102

Safari, F., Salimi, M., Tavasoli, A., & Ataei, A. (2016). Non-catalytic conversion of wheat straw, walnut shell and almond shell into hydrogen rich gas in supercritical water media. Chinese Journal of Chemical Engineering, 24(8), 1097–1103. https://doi.org/10.1016/j.cjche.2016.03.002

Sarker, T. R., Nanda, S., Meda, V., & Dalai, A. K. (2022). Process optimization and investigating the effects of torrefaction and pelletization on steam gasification of canola residue. Fuel, 323, 124239. https://doi.org/10.1016/j.fuel.2022.124239

Sasaki, M., Kabyemela, B., Malaluan, R., Hirose, S., Takeda, N., Adschiri, T., & Arai, K. (1998). Cellulose hydrolysis in subcritical and supercritical water. Journal of Supercritical Fluids, 13(1–3), 261–268. https://doi.org/10.1016/S0896-8446(98)00060-6

Saxena, R. C., Adhikari, D. K., & Goyal, H. B. (2009). Biomass-based energy fuel through biochemical routes: A review. Renewable and Sustainable Energy Reviews, 13(1), 167–178. https://doi.org/10.1016/j.rser.2007.07.011

Seah, C. C., Tan, C. H., Arifin, N. A., Hafriz, R. S. R. M., Salmiaton, A., Nomanbhay, S., & Shamsuddin, A. H. (2023). Co-pyrolysis of biomass and plastic: Circularity of wastes and comprehensive review of synergistic mechanism. Results in Engineering, 17, 100989. https://doi.org/10.1016/j.rineng.2023.100989

Selvi Gökkaya, D., Çokkuvvetli, T., Sağlam, M., Yüksel, M., & Ballice, L. (2019). Hydrothermal gasification of poplar wood chips with alkali, mineral, and metal impregnated activated carbon catalysts. The Journal of Supercritical Fluids, 152, 104542. https://doi.org/10.1016/j.supflu.2019.104542

Selvi Gökkaya, D., Sert, M., Sağlam, M., Yüksel, M., & Ballice, L. (2020). Hydrothermal gasification of the isolated hemicellulose and sawdust of the white poplar (Populus alba L.). Journal of Supercritical Fluids, 162. https://doi.org/10.1016/j.supflu.2020.104846

Shafizadeh, F. (1982). Introduction to pyrolysis of biomass. Journal of Analytical and Applied Pyrolysis, 3(4), 283–305. https://doi.org/10.1016/0165-2370(82)80017-X

Sims, R. E. H., Mabee, W., Saddler, J. N., & Taylor, M. (2010). An overview of second generation biofuel technologies. Bioresource Technology, 101(6), 1570–1580. https://doi.org/10.1016/j.biortech.2009.11.046

Sinag, A., Kruse, A., & Maniam, P. (2012). Hydrothermal conversion of biomass and different model compounds. Journal of Supercritical Fluids, 71, 80–85. https://doi.org/10.1016/j.supflu.2012.07.010

Sivaranjanee, R., Kumar, P. S., & Rangasamy, G. (2023). A recent advancement on hydrothermal carbonization of biomass to produce hydrochar for pollution control. Carbon Letters. https://doi.org/10.1007/s42823-023-00576-2

Street, N. W. (n.d.). Detailed Oil Compositional Analysis Enables Evaluation of Impact of Temperature and Biomass-to- Catalyst Ratio on ex DC 20036 Fast Situ Catalytic.

Sun, J., Xu, L., Dong, G. hua, Nanda, S., Li, H., Fang, Z., Kozinski, J. A., & Dalai, A. K. (2020). Subcritical water gasification of lignocellulosic wastes for hydrogen production with Co modified Ni/Al2O3 catalysts. Journal of Supercritical Fluids, 162. https://doi.org/10.1016/j.supflu.2020.104863

Tekin, K., Karagöz, S., & Bektaş, S. (2014). A review of hydrothermal biomass processing. Renewable and Sustainable Energy Reviews, 40, 673–687. https://doi.org/10.1016/j.rser.2014.07.216

Toor, S. S., Rosendahl, L., & Rudolf, A. (2011). Hydrothermal liquefaction of biomass: A review of subcritical water technologies. Energy, 36(5), 2328–2342. https://doi.org/10.1016/j.energy.2011.03.013

Wang, Q., Zhang, X., Cui, D., Bai, J., Wang, Z., Xu, F., & Wang, Z. (2023). Advances in supercritical water gasification of lignocellulosic biomass for hydrogen production. Journal of Analytical and Applied Pyrolysis, 170, 105934. https://doi.org/10.1016/j.jaap.2023.105934

Wu, Y. M., Zhao, Z. L., Li, H. Bin, & He, F. (2009). Low temperature pyrolysis characteristics of major components of biomass. Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 37(4), 427–432. https://doi.org/10.1016/s1872-5813(10)60002-3

Xiao, R., Chen, X., Wang, F., & Yu, G. (2010). Pyrolysis pretreatment of biomass for entrained-flow gasification. Applied Energy, 87(1), 149–155. https://doi.org/10.1016/j.apenergy.2009.06.025

Yoganandham, S. T., Sathyamoorthy, G., & Renuka, R. R. (2020). Emerging extraction techniques: Hydrothermal processing. In Sustainable Seaweed Technologies. Elsevier Inc. https://doi.org/10.1016/b978-0-12-817943-7.00007-x

Youssef, E. A., Chowdhury, M. B. I., Nakhla, G., & Charpentier, P. (2010). Effect of nickel loading on hydrogen production and chemical oxygen demand (COD) destruction from glucose oxidation and gasification in supercritical water. International Journal of Hydrogen Energy, 35(10), 5034–5042. https://doi.org/10.1016/j.ijhydene.2009.08.076

Zhang, H., Zhang, R., Li, W., Ling, Z., Shu, W., Ma, J., & Yan, Y. (2022). Agricultural waste-derived biochars from co-hydrothermal gasification of rice husk and chicken manure and their adsorption performance for dimethoate. Journal of Hazardous Materials, 429, 128248. https://doi.org/10.1016/j.jhazmat.2022.128248

Zhang, L., Xu, C. (Charles), & Champagne, P. (2010). Overview of recent advances in thermo-chemical conversion of biomass. Energy Conversion and Management, 51(5), 969–982. https://doi.org/10.1016/j.enconman.2009.11.038

Zhang, X., Wilson, K., & Lee, A. F. (2016). Heterogeneously Catalyzed Hydrothermal Processing of C5-C6 Sugars. Chemical Reviews, 116(19), 12328–12368. https://doi.org/10.1021/acs.chemrev.6b00311

Authors

Syed O Ali
Zubair Hashmi
[email protected] (Primary Contact)
Tanzeel Usman
Atta Muhammad
Ibrahim Maina Idriss
Syed Hassan Abbas
Mubashir Hassan
Ali, S. O., Hashmi, Z., Usman, T., Muhammad, A., Idriss, I. M., Abbas, S. H., & Hassan, M. (2024). Exploring Biomass Conversion Technologies: From Raw Materials to Valuable Products. AMPLITUDO : Journal of Science and Technology Innovation, 3(2), 87–96. https://doi.org/10.56566/amplitudo.v3i2.132

Article Details