The Effect of Hydroxyapatite on Alveolar Bone Regeneration in Various Dental Procedure: Systematic Review and Meta-Analysis

Silvia Anitasari (1), Wendimi Fatimala Belem (2), Deasy Evriyani Wahab (3)
(1) Universitas Mulawarman, Indonesia,
(2) University of Joseph Ki-Zerbo, Burkina Faso,
(3) Department of Health, Samarinda City Govenment, Indonesia

Abstract

Background. The effect of hydroxyapatite (HA) bone substitute on alveolar bone regeneration has been analyzed in various dental procedures including ridge preservation, sinus augmentation, and periodontal bone defect treatment. The objective on this study was to determine and analyze the structural effect of the HA bone substitute in these dental applications. Methods. The systematic review was conducted using electronic databases from PUBMED, EMBASE, and COCHRANE. The search covered articles published from 1998 up to November 2023. The primary outcome measures were radiographic (intraoral periapical, CT long cone-paralleling technique, computer-assisted densitometry image analysis), histologic/histomorphometry, and other radiographic methods. The secondary outcome measures related to bone regeneration were assessed, including clinical, radiographic/histologic, and histological evaluations. Conclusion. The present systematic review focused on randomized controlled trials (RCTs) and prospective controlled clinical trials (CCTs). The results showed that HA and ß-TCP were found to be safe and clinically acceptable compared to other treatments.

Full text article

Generated from XML file

References

Ajami, E., Fu, C., Wen, H., Bassett, J., Park, S., & Pollaed, M. (2021). Early bone healing on hydroxyapatite-coated and chemically-modified hydrophilic implant surfaces in an ovine model. Int J Mol Sci, 22(17), 9361. https://doi.org/10.3390/ijms22179361.

Al-Hamoudi, F., Rehman, H., Almoshawan, Y., Talari, A., Chaudhry, AA.,, Reilly, G., & Rehman, I. (2022). Bioactive composite for orbital floor repair and regeneration. Int J Mol Sci, 23(18), 10333. https://doi.org/10.3390/ijms231810333

Baena, R., Lupi, S., Pastorino, R., Maiorona, C., Lucchese, A., & Rizzo, S. (2013). Radiographic evaluation of regenerated bone following poly(lactic-co-glycolic) acid/hydroxyapatite and deproteinized bovine bone graft in sinus lifting. J. Craniofac. Surg, 24(3), 845-848. https://doi.org/10.1097/SCS.0b013e31827ca01a.

Bajuri, M., Selvanathan, N., Schaff, F., Suki, M., & Ng, A. (2021). Tissue-engineered hydroxyapatite bone scaffold impregnated with osteoprogenitor cells promotes bone regeneration in sheep moel. Tissue Eng Regen Med, 18(3), 377-385. https://doi.org/10.1007/s13770-021-00343-2.

Basyuni, S., Ferro, A., Santhanam, V., Birch, M., & McCaskie, A. (2020). Systematic scoping review of mandibular bone tissue engineering. Br J Oral Maxillofac Surg, 58(6), 632-642. https://doi.org/10.1016/j.bjoms.2020.03.016.

Brum, I., Carvalho, J., Pires, J., Carvalho, M., Santos, L., & Elias, C. (2019). Nanosized hydroxyapatite and B-tricalsium phosphate coposite: Physico-chemical, cytotoxicity, morphological properties and in vivo trial. Sci Rep, 9(1), 19602. https://doi.org/10.1038/s41598-019-56124-4.

Campodoni, E., Velez, M., Fragogeorgi, E., Morales, I., Presa PDL., Stanicki, D., Dozio, S., Xanthopoulos, S., Bouziotis, P., Dermisiadou, E., Rouchota, M., Loudos, G., Marin, P., Laurent, S., Boutry, S., Pamseri, S., Montesi, M., Tampieri, A., & Sandri, M. (2021). Magnetic and radio-labeled bio-hybrid scaffolds to promote and track in vivo the progress of bone regeneration. Biomater Sci, 9(22), 7575-7590. https://doi.org/10.1039/d1bm00858g.

Cann, S., Tornquist, E., Barreto, I., Faulob, M., Lomami, H., Verezhak, M., Guizar-Sicairos, M., Isaksson, H., & Haiat, G. (2020). Spatio-temporal evolution of hydroxyapatite crystal thickness at the bone-implant interface. Acta Biomater, 116, 391-399. https://doi.org/10.1016/j.actbio.2020.09.021.

Chamrad, J., Marcian, P., & Cizek, J. (2021). Beneficial osseointegration effect of hydroxyapatite coating on cranial implant-FEM investigation. Plos one, 16(7), e0254837. https://doi.org/10.1371/journal.pone.0254837.

Chopra, V., Thomas, J., Sharma, A., Panwar, V., Kaushik, S., Sharma, S., Porwal, K., Kulkarni, C., Rajput, S., Singh, H., Jagavelu, K., Chattopadhyay, N., & Ghosh, D. (2020). Synthesis and evaluation of a zinc eluting rGo/hydroxyapatite nanocomposite optimized for bone augmentation. ACS Biomater Sci Eng, 6(12), 6710-6725. https://doi.org/10.1021/acsbiomaterials.0c00370.

Chugh, A., Mehrotra, D., & Yadav, P. (2021). A systematic review on the outcoe of distraction osteogenesis in TMJ ankylosis. J Oral Biol Craniofac Res, 11(4), 581-595. https://doi.org/10.1016/j.jobcr.2021.07.007

Cuozzo, R., Ssatoretto, S., Resende, R., Alves, A., Mavropoulos, E., Da Silva, M., & Calasans-Maia, M. (2020). Biological evaluation of zinc-containing calcium alginate-hydeoxyapatite composite microspheres for bone regeneration. J Biomed Mater Res B Appl Biomater, 108(6), 2610-2620. https://doi.org/10.1002/jbm.b.34593.

Gaddam, V., Podarala, V., Venkata, S., Mukku, S., Devalam, R., & Kundu, B. (2022). Multi-ion-doped nano-hydroxyapatite-coated titanium intramedulalry pins for long bone fracture repair in dogs-clinical evaluation. J Biomed Mater Res B Appl Biomater, 110(4), 806-816. https://doi.org/10.1002/jbm.b.34960.

Ghanaati, S., Barbeck, M., Lorenz, j., Stuebinger, S., Seitz, O., Landes, c., Kaviacs, A., Kirpatrick, C., & Sader, R. (2013). Synthetic bone substitute material comparable with xenogeneic material for bone tissue regeneration in oral cancer patients: first and preliminary histological, histomorphometrical and clinical results. Ann. Maxillofac. Surg., 3(2), 126-138. https://doi.org/10.4103/2231-0746.119221

Hassani, A., Khoshfetrat, A., Rahbarghazi, R., & Sakai, S. (2022). Collagen and nano-hydroxyapatite interaction in alginate-based microcapsule provide an appropriate osteogenic microenvironment for modular bone tissue formation. Carbohydr Polym, 277, 118807. https://doi.org/10.1016/j.carbpol.2021.118807.

Kazimierczak, P., Wessely-Szponder, J., Palka, K., Barylyak, A., Zinchenko, V., & Przekora, A. (2023). Hydroxyapatite of fluorapite-which bioceramic is better as a base for the production of bone scaffold? A comprehensive comparative study. Int J Mol Sci, 24(6), 5576. https://doi.org/10.3390/ijms24065576.

Kühl, S., Brochhausen, C., Götz, H., Filippi, A., Payer M., d'Hoedt, B., & Kreisler, M. (2013). The influence of bone substitute materials on the bone volume after maxillary sinus augmentation: a microcomputerized tomography Clin. Oral Investig, 17(2), 543-551.

Kylmaoja, E., Holopainen, J., Abushahba, F., Ritala, M., & Tuukkanen, J. (2022). Osteoblast attachment on titanium coated with hydroxyapatite by atomic layer deposition. Biomolecules, 12(5), 654. https://doi.org/10.3390/biom12050654.

Lal, N., & Dixit, J. Biomaterials in periodontal osseous defects. J. Oral Biol. Craniofac. Res., 2(1), 36-40. https://doi.org/10.1016/S2212-4268(12)60009-8

Li, L., Li, J., Zuo, Q., Zuo, Y., Lin, L., Cai, B., & Li, Y. (2022). Lotus root and osteon-inspired channel structural scaffold mediate cell biomineralization and vascularized bone tissue regeneration. J Biomed Mater Res B Appl Biomater, 110(5), 1178-1191. https://doi.org/10.1002/jbm.b.34991.

Li, Y., Li, B., Song, Y., Ma, A., Li, C., Zhang, X., Li, H., Zhang, Q., & Zhang, K. (2019). Improved osteoblast adhesion and osseointegration on TiO2 nanotubes surface with hydroxyapatite coating. Dent Mater J, 38(2), 278-286. https://doi.org/10.4012/dmj.2018-118.

Lin, W., Chuang, C., Yao, C., & Tang, C. (2020). Effect of cobalt precursors on cobalt-hydroxyapatite used in bone regeneration and MRI. J. Dent Res, 99(3), 277-284. https://doi.org/10.1177/0022034519897006.

Lindgren, C., Hallman, M., Sennerby, L., & Sammons, R. (2010). Back-scattered electron imaging and elemental analysis of retrieved bone tissue following sinus augmentation with deproteinized bovine bone or biphasic calcium phosphate. Clin Orak Implants Res, 21(9), 924-930. https://doi.org/10.1111/j.1600-0501.2010.01933.x

Luczyszyn, S., Paplexiou, V., Novaes, A., Grisi, M., Souza, S., & Taba, M. (2005). Acellular dermal matrix and hydroxyapatite in prevention of ridge deformities after tooth extraction. Implant Dent, 14(2), 176-184. https://doi.org/10.1097/01.id.0000165082.77499.41.

Makishi, S., Watanabe, T., Saito, K., & Ohshima, H. (2023). Effect of hydroxyapatite/B-Tricalcium Phosphate on Osseointegration after implantation into mouse maxilla. Int J Mol Sci, 24(4), 3124. https://doi.org/10.3390/ijms24043124.

Mendez, C., Lang, N., Caneva, M., Lemus GR., Solano, G., & Botticelli, D. (2017). Comparison of allograft and xenograft used for alveolar ridge preservation. A clinical and histomorphometric RCT in humans. Randomized Contrlled Trial, 19(4), 608-615. https://doi.org/10.1111/cid.12490.

Muller, W., Ackermann, M., Al-Nawas, B., Righesso, L., Munoz-Espi, R., Tolba, E., Neufurth, M., Schroder, H., & Wang, X. (2020). Amplified morphogenetic and bone forming activity of amorphous versus crystalline calcium phosphate/polyphosphate. Acta Biomater, 118, 233-247. https://doi.org/10.1016/j.actbio.2020.10.023.

Mumith, A., Cheong, V., Fromme, P., Coathup, M., & Blunn, G. (2020). The effect of strontum and silicon substituted hydroxyapatite electrochemical on bone ingrowth and osseointegration of selective laser sintered porous metal implants. Plos one, 15(1), e0227232. https://doi.org/10.1371/journal.pone.0227232.

Muthusamy, S., Mahendiran, B., Sampath, S., Jaisankar, S., Anandasadagopan, S., & Krishnakumar, G. (2021). Hydroxyapatite nanophases augmented with selenium and manganese ions for bone regeneration: Physiochemical, microstructural and biological characterization. Mater Sci Eng C Mater Biol Appl, 126, 112149. https://doi.org/10.1016/j.msec.2021.112149.

Opris, H., Bran, S., Dinu, C., Baciut, M., Prodan, D., Mester, A., & Baciut, G. (2020). Clinical applications of avian eggshell-derived hydroxyapatite. Bosn J Basic Med Sci, 20(4), 430-437. https://doi.org/10.17305/bjbms.2020.4888.

Pan, Y., Zhao, Y., Kuang, R., Liu, H., Sun, D., Mao, T., Jiang, K., Yang, X., Watanabe, N., Mayo, K., Lin, Q., & Li, J. (2020). Injectable hydrogel-loaded nano-hydroxyapatite that improves bone regeneration and alveolar ridge promotion. Mater Sci Eng C Mater Biol Appl, 116, 111158. https://doi.org/10.1016/j.msec.2020.111158

Pearson, J., Gerken, N., Bae, C., Lee, K., Satsangi, A., McBride, S., Appleford, M., Dean, D., Hollinger, J., Ong, J., & Guda, T. (2020). In vivo hydroxyapatite scaffold performance in infected bone defects. J Biomed Mater Res B Appl Biomater, 108(3), 1157-1166. https://doi.org/10.1002/jbm.b.34466.

Popescu, R., Tabaran, F., Farcasanu, A., Purdoiu, R., Magyari, K., Vulpoi, A., Dreanca, A., Sevastre, B., Simon, S., Popuc, I., & Baia, L. (2020). Bone regeneration response in an experimental long bone defect orthotopically implanted with alginate-pullulan-glass-ceramic composite scaffolds. J Biomed Mater Res B Appl Biomater, 108(3), 1129-1140. https://doi.org/10.1002/jbm.b.34464.

Prabakaran, S., Rajan, M., Lv, C., & Meng, G. (2020). Lanthanides-substituted hydroxyapatite/aloe vera composite coated titanium plate for bone tissue regeneration. Int J Nanomedicine, 15, 8261-8279. https://doi.org/ 10.2147/IJN.S267632.

Radulescu, D., Vasile, O., Andronescu, E., & Ficai, A. (2023). Latest research of doped hydroxyapatite for bone tissue engineering. Int J Mol Sci, 24(17), 13157. https://doi.org/10.3390/ijms241713157.

Ren, M., Wang, X., Hu, M., Jiang, Y., Xu, D., Xiang, H., Lin, J., & Yu, B. (2022). Enhanced bone foration in rat critical-size tibia defect by a novel quersetin-containing alpha-calcium sulphate hemihydrate/nano-hydroxyapatite composite. Biomed Pharmacother, 146, 112570. https://doi.org/10.1016/j.biopha.2021.112570.

Rethlefsen, M., Kirtley, s., Waffenschmidt, S., Ayala, A., & Moher, D. (2021). PRISMA-S: an extension to the PRISMA statement for Reporting Literature Searches in Systematic Review. Sys Rev, 10(1), 39. https://doi.org/10.1186/s13643-020-01542-z

Sato, N., Handa, K., Venkataiah, V., Hasegawa, T., Njuguna, M., Yahata, Y., & Saito, M. (2020). Comparison of the vertical bone defect healing abilities of carbonate apatite, B-tricalcium phosphate, hydroxyapatite and bovine-derived heterogenous bone. Dent Mater J, 39(2), 309-318. https://doi.org/10.4012/dmj.2019-084.

Schorn, L., Fienitz, T., Gerstenberg, F., Sterner-Kock, A., Maul, A., Lommen, J., Holtmann, H., & Rothamel, D. (2021). Influence of different carrier materials on biphasic calcium phosphate induced bone regeneration. Clin Oral Invest, 25(6), 3729-3737. https://doi.org/10.1007/s00784-020-03700-y.

Shang, L., Shao, J., & Ge., S. (2022). Immunomodulatory properties: the accelerant of hydroxyapatite-based materials for bone regeneration. Tissue Eng Part C Methods, 28(8), 377-392. https://doi.org/10.1089/ten.TEC.2022.00111112.

Sun, C., Weng, P., Chang, J., Lin, Y., Tsunag, F., Lin, F., Tsai, T., & Sun, J. (2022). Metformin-incorporated gelatin/hydroxyapatite nanofiber scaffold for bone regeneration. Tissue Eng part A, 28(1-2), 1-12. https://doi.org/10.1089/ten.TEA.2021.0038.

Tan, X., Gerhard, E., Wang, Y., Tran, R., Xu, H., Yan, S., Rizk, E., Armstrong, A., Zhou, Y., Du, J., Bai, X., & Yang, J. (2022). Development of biodegradable osteopromotive citrate-based bone putty. Small, 18(36), e2203003. https://doi.org/10.1002/smll.202203003.

Tosta, M., Cortes, A. R., Corrêa, L., Pinto, S., Jr., , Tumenas, I., & Katchburian, E. (2013). Histologic and histomorphometric evaluation of a synthetic bone substitute for maxillary sinus grafting in humans. . Clin. Oral Implants Res., 24(8), 866-870. https://doi.org/10.1111/j.1600-0501. 2011. 02384. x

Vignesh, U., Mehrotra, D., Howlader, D., Kumar, S., & Anand, V. (2019). Bone marrow aspirate in cystic maxillofacial bony defects. Randomized Controlled Trial, 30(3), e247-e251. https://doi.org/10.1097/SCS.0000000000005200.

Wang, B., Liu, J., Niu, D., Wu, N., Yun, W., Wang, W., Zhang, K., Li, G., Yan, S., Xu, G., & Yin, J. (2021). Mussel-Inspired Bisphosphonated Injectable Nanocomposite Hydrogels With Adhesive, Self-Healing, And Osteogenic Properties For Bone Regeneration. ACS Appl Mater Interfaces, 13(28), 32673-32689. https://doi.org/10.1021/acsami.1c06058.

Wang, H., Hu, B., Li, H., Feng, G., Pan, S., Chen, Z., Li, B., & Song, J. (2022). Biomimetic Mineralized Hydeoxyapatite Nanofiber-Oncorporated Methacrylated Gelatin Hydrogel With Improved Mechanical And Osteoinductive performances for bone regeneration. Int J Nanomedicine, 17, 1511-1529. https://doi.org/10.2147/IJN.S354127.

Wu, Y., Yang, L., Chen, L., Geng, M., Xing, Z., Chen, S., Zeng, Y., Zhou, J., Sun, K., Yang, X., & Shen, B. (2022). Core-Shell Structured Porous Calcium Phosphate Bioceramic Spheres For Enhanced Bone Regeneration. ACS Appl Mater Interfaces, 14(42), 47491-47506. https://doi.org/10.1021/acsami.2c15614.

Xiao, X., Liu, Z., Shu, R., Wang, J., Zhu, X., Bai, D., & Lin, H. (2023). Periodontal bone regeneration with a degradable thermoplastic HA/PLCL bone graft. J Mater Chem B, 11(4), 772-786. https://doi.org/10.1039/d2tb02123d.

Youseflee, P., Ranjbar, F., Bahraminasab, M., Ghanbari, A., Faradonbeh, D., Arab, S., Alizadeh, A., & Nooshabadi, V. (2023). Exosome loaded hydroxyapatite (HA) scaffold promotes bone regeneration calvarial defect: an in vivo study. Cell Tissue Bank, 24(2), 389-400. https://doi.org/10.1007/s10561-022-10042-4.

Yu, L., & Wei, M. (2021). Biomineralization of collagen- based materials for hard tissue repair. Int J Mol Sci, 22(2), 944. https://doi.org/10.33990/ijms22020944

Authors

Silvia Anitasari
[email protected] (Primary Contact)
Wendimi Fatimala Belem
Deasy Evriyani Wahab
Anitasari, S., Belem, W. F., & Wahab, D. E. (2024). The Effect of Hydroxyapatite on Alveolar Bone Regeneration in Various Dental Procedure: Systematic Review and Meta-Analysis. AMPLITUDO : Journal of Science and Technology Innovation, 3(1), 15–20. https://doi.org/10.56566/amplitudo.v3i1.155

Article Details