Ratio of All Unit Weight (AUW) to Thrust force of Upper Wing Aeromodelling Aircraft
Abstract
The aircraft used in this study is the upper wing type which has the advantage of flight stability. This upper wing aircraft was designed by the researchers themselves with three different types of wings with a wing span of 1.35m and a fuse lag of 0.925 meters. There are four main forces that work when the plane is in the air, namely lift, thrust, air resistance and gravity. From the results of this study, it can be concluded that the heavier the aircraft unit being flown, the greater the minimum thrust required to fly the aircraft. The measurement results of the 3 aircraft weights, namely 917 grams, require a thrust of 2030 grams of force, whereas for a total aircraft weight of 1,230 grams a thrust of 2510 grams is required, and at an aircraft weight of 1495 grams a minimum thrust of 3040 grams is required. The results also show that the thrust generated is not linear with the throttle position
Full text article
References
Anggriawan, R., Karo-Karo, U., Suhayat, D., Relevansi Materi Ekstrakurikuler Aeromodelling Terhadap Standar Materi Mata Pelajaran MDTPU. Journal of Mechanical Engineering Education, Vol.1, No.1, Juni 2014. DOI: https://doi.org/10.17509/jmee.v1i1.3744
Bekker, J. G., Craig, I. K., & Pistorius, P. C. (1999). Modeling and Simulation of Arc Furnace Process. ISIJ International, 39(1), 23–32. DOI: https://doi.org/10.2355/isijinternational.39.23
Hermanto, D, Perancangan Pengukur Kekuatan Motor Brushless Berbasis ESP8266, Jurnal Teknik Informatika dan Sistem Informasi ISSN 2407-4322, Vol. 5, No. 1, September 2018, Hal. 36-44 E-ISSN 2503-2933 36 DOI: https://doi.org/10.35957/jatisi.v5i1.109
Majid, A., Sumiharto, R., Wibisono, S.B., Identifikasi Model dari Pesawat Udara Tanpa Awak Sayap Tetap Jenis Bixler, IJEIS, Vol.5, No.1, April 2015, pp. 43~54. DOI: https://doi.org/10.22146/ijeis.7152
Miraza, R.S., Isranuri, I., Analisis Tegangan Pada Sayap Horizontal Bagian Ekor Aeromodelling Tipe Glider Akibat Laju Aliran Udara Dengan Menggunakan Software Berbasis Computional Fluid Dynamic (CFD), Jurnal e-Dinamis, Volume I, No.1 Juni 2012.
Nugraha, L.O., Kushartanti, W., Evaluation of Aeromodelling Coaching System, Advances in Social Science, Education and Humanities Research, volume 278, 2nd Yogyakarta International Seminar on Health, Physical Education, and Sport Science (YISHPESS) 2018.
Putra, I.P.C.A., Rusli, M., Suniantara, I.K.P., Aplikasi Multimedia Interaktif Pengenalan Olahraga Aeromodelling, Seminar Nasional Sistem Informasi dan Teknik Informatika Sensitif 2019.
Rokhmana, C.A., Percepatan Pemetaan Kadaster Memanfaatkan Teknologi Wahana Udara Tanpa Awak ,Bhumi No. 38 Tahun 12, Oktober 2013.
Setyasaputra, N., Septian, F., Fernanda, R., Bahri, S., Rahmatio, I.D., Dirgantoro, B., Platform Unmanned Aerial Vehicle Untuk Aerial Photography Aeromodelling And Payload Telemetry Research Group (APTRG), Seminar Nasional Penginderaan Jauh 2014.
Zuhdi, M., Makhrus,M., Wahyudi. Aspek Fisika dalam Perancangan Pesawat Aeromodeling Jenis Upper wing Wing, Kappa Journal, Program Studi Pendidikan Fisika FMIPA Universitas Hamzanwadi, Vol 3 no 1, 2019. DOI: https://doi.org/10.29408/kpj.v3i2.1604
Zuhdi, M., Makhrus,M., Wahyudi. Hubungan Kecepatan Stall dan Berat Total Pesawat Aeromodelling Wing Dragon, Jurnal Fisika dan Pendidikan Fisika KONSTAN, UIN Mataram, Vol 6, no 2, 2021.Billing, M.P, 1946“Structural Geology,” Prentice Hall, pp. 58-87 DOI: https://doi.org/10.20414/konstan.v6i2.78
Authors
Copyright (c) 2023 Muhammad Zuhdi, Aris Doyan, Syahrial Syahrial, Joni Rokhmat, Kosim Kosim
This work is licensed under a Creative Commons Attribution 4.0 International License.