Development of Microcapsules of Bioactive Compounds Extracted from Grape Pomace of Ciravas Agra
Abstract
Grape pomace is a prominent byproduct of winemaking, which provides bioactive phytochemicals such as polyphenols, conferring health benefits to humans, including anticancer properties. Delivering bioactive compounds extracted from grape pomace as microcapsules offers a sustainable and effective solution for developing tailored leukemia therapies. This approach highlights integrating environmentally friendly practices with medical innovation, mainly through the valorization of grape pomace, a byproduct of winemaking. For this purpose, the study uses ultrasound-assisted extraction (UAE) to optimize the extraction of these bioactive compounds. It evaluates how temperature and time affect antioxidant activity and total phenolic content. The results indicated that 60 minutes was optimal for the extraction yield of UAE with appreciable antioxidants (73.2 ± 1.5%) and total phenolic content (75.3 ± 2.1 mg GAE/g) compared to other methods studied here. Molecular docking analysis further revealed strong interactions between anthocyanins, particularly delphinidin-3-O-glucoside, and proteins associated with Acute Promyelocytic Leukemia (APL) and Chronic Myeloid Leukemia (CML), suggesting potential therapeutic applications. The present study offers a new perspective on the importance of grape pomace as an eco-friendly source of bioactive molecules in line with green chemistry ethics that may find applications in pharmaceuticals or nutraceutical sectors
Full text article
References
Agu, P. C., Afiukwa, C. A., Orji, O. U., Ezeh, E. M., Ofoke, I. H., Ogbu, C. O., Ugwuja, E. I., & Aja, P. M. (2023). Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Scientific Reports, 13, 13398. https://doi.org/10.1038/s41598-023-40160-2 DOI: https://doi.org/10.1038/s41598-023-40160-2
Alimoghaddam, K. (2014). A Review of Arsenic Trioxide and Acute Promyelocytic Leukemia. International Journal of Hematology-Oncology and Stem Cell Research, 8(3), 44–54.
Almanza-Oliveros, A., Bautista-Hernández, I., Castro-López, C., Aguilar-Zárate, P., Meza-Carranco, Z., Rojas, R., Michel, M. R., & Martínez-Ávila, G. C. G. (2024). Grape Pomace—Advances in Its Bioactivity, Health Benefits, and Food Applications. Foods, 13(4), Article 4. https://doi.org/10.3390/foods13040580 DOI: https://doi.org/10.3390/foods13040580
Alves, R., Gonçalves, A. C., Rutella, S., Almeida, A. M., De Las Rivas, J., Trougakos, I. P., & Sarmento Ribeiro, A. B. (2021). Resistance to Tyrosine Kinase Inhibitors in Chronic Myeloid Leukemia—From Molecular Mechanisms to Clinical Relevance. Cancers, 13(19), 4820. https://doi.org/10.3390/cancers13194820 DOI: https://doi.org/10.3390/cancers13194820
Asma, S. T., Acaroz, U., Imre, K., Morar, A., Shah, S. R. A., Hussain, S. Z., Arslan-Acaroz, D., Demirbas, H., Hajrulai-Musliu, Z., Istanbullugil, F. R., Soleimanzadeh, A., Morozov, D., Zhu, K., Herman, V., Ayad, A., Athanassiou, C., & Ince, S. (2022). Natural Products/Bioactive Compounds as a Source of Anticancer Drugs. Cancers, 14(24), 6203. https://doi.org/10.3390/cancers14246203 DOI: https://doi.org/10.3390/cancers14246203
Attique, S. A., Hassan, M., Usman, M., Atif, R. M., Mahboob, S., Al-Ghanim, K. A., Bilal, M., & Nawaz, M. Z. (2019). A Molecular Docking Approach to Evaluate the Pharmacological Properties of Natural and Synthetic Treatment Candidates for Use against Hypertension. International Journal of Environmental Research and Public Health, 16(6), 923. https://doi.org/10.3390/ijerph16060923 DOI: https://doi.org/10.3390/ijerph16060923
Baliyan, S., Mukherjee, R., Priyadarshini, A., Vibhuti, A., Gupta, A., Pandey, R. P., & Chang, C.-M. (2022). Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa. Molecules, 27(4), 1326. https://doi.org/10.3390/molecules27041326 DOI: https://doi.org/10.3390/molecules27041326
Caponio, G. R. (2023). Promising Application of Grape Pomace and Its Agri-Food Valorization: Source of Bioactive Molecules with Beneficial Effects. DOI: https://doi.org/10.3390/su15119075
de Almeida, T. D., Evangelista, F. C. G., & Sabino, A. de P. (2023). Acute Promyelocytic Leukemia (APL): A Review of the Classic and Emerging Target Therapies towards Molecular Heterogeneity. Future Pharmacology, 3(1), Article 1. https://doi.org/10.3390/futurepharmacol3010012 DOI: https://doi.org/10.3390/futurepharmacol3010012
Ferrer-Gallego, R., & Silva, P. (2022). The Wine Industry By-Products: Applications for Food Industry and Health Benefits. Antioxidants, 11, 2025. https://doi.org/10.3390/antiox11102025 DOI: https://doi.org/10.3390/antiox11102025
Jaiswal, Y., Guan, Y., Moon, K., & Williams, L. (2019). Anthocyanins: Natural Sources and Traditional Therapeutic Uses. https://doi.org/10.5772/intechopen.86888 DOI: https://doi.org/10.5772/intechopen.86888
Julius Kühn-Institut (JKI). (n.d.). CIRAVAS AGRA. Retrieved August 5, 2024, from https://www.vivc.de/index.php?r=passport%2Fview&id=23370
Khalid, R., & Riasat, S. (2023). Molecular Pathogenesis and Treatment Strategies of Chronic Myeloid Leukemia (CML). Sudan Journal of Medical Sciences (SJMS), 525–538. https://doi.org/10.18502/sjms.v18i4.14741 DOI: https://doi.org/10.18502/sjms.v18i4.14741
Kumar, K., Srivastav, S., & Sharanagat, V. S. (2020). Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrasonics Sonochemistry, 70, 105325. https://doi.org/10.1016/j.ultsonch.2020.105325 DOI: https://doi.org/10.1016/j.ultsonch.2020.105325
Lin, B., Gong, C., Song, H., & Cui, Y. (2017). Effects of anthocyanins on the prevention and treatment of cancer. British Journal of Pharmacology, 174(11), 1226–1243. https://doi.org/10.1111/bph.13627 DOI: https://doi.org/10.1111/bph.13627
Liquori, A., Ibañez, M., Sargas, C., Sanz, M. Á., Barragán, E., & Cervera, J. (2020). Acute Promyelocytic Leukemia: A Constellation of Molecular Events around a Single PML-RARA Fusion Gene. Cancers, 12(3), 624. https://doi.org/10.3390/cancers12030624 DOI: https://doi.org/10.3390/cancers12030624
Mahnashi, M. H., Alqahtani, Y. S., Alqarni, A. O., Alyami, B. A., Jan, M. S., Ayaz, M., Ullah, F., Rashid, U., & Sadiq, A. (2021). Crude extract and isolated bioactive compounds from Notholirion thomsonianum (Royale) Stapf as multitargets antidiabetic agents: In-vitro and molecular docking approaches. BMC Complementary Medicine and Therapies, 21(1), 270. https://doi.org/10.1186/s12906-021-03443-7 DOI: https://doi.org/10.1186/s12906-021-03443-7
Moro, K. I. B., Bender, A. B. B., da Silva, L. P., & Penna, N. G. (2021). Green Extraction Methods and Microencapsulation Technologies of Phenolic Compounds From Grape Pomace: A Review. Food and Bioprocess Technology, 14(8), 1407–1431. https://doi.org/10.1007/s11947-021-02665-4 DOI: https://doi.org/10.1007/s11947-021-02665-4
Rath, S., Jagadeb, M., & Bhuyan, R. (2021). Molecular docking of bioactive compounds derived from Moringa oleifera with p53 protein in the apoptosis pathway of oral squamous cell carcinoma. Genomics & Informatics, 19(4), e46. https://doi.org/10.5808/gi.21062 DOI: https://doi.org/10.5808/gi.21062
RCSB Protein Data Bank. (2024). RCSB PDB: Homepage. https://www.rcsb.org/
Rodsamran, P., & Sothornvit, R. (2019). Extraction of phenolic compounds from lime peel waste using ultrasonic-assisted and microwave-assisted extractions. Food Bioscience, 28, 66–73. https://doi.org/10.1016/j.fbio.2019.01.017 DOI: https://doi.org/10.1016/j.fbio.2019.01.017
Sabra, A., Netticadan, T., & Wijekoon, C. (2021). Grape bioactive molecules, and the potential health benefits in reducing the risk of heart diseases. Food Chemistry: X, 12, 100149. https://doi.org/10.1016/j.fochx.2021.100149 DOI: https://doi.org/10.1016/j.fochx.2021.100149
Siddiqui, N., Rauf, A., Latif, A., & Mahmood, Z. (2017). Spectrophotometric determination of the total phenolic content, spectral and fluorescence study of the herbal Unani drug Gul-e-Zoofa (Nepeta bracteata Benth). Journal of Taibah University Medical Sciences, 12(4), 360–363. https://doi.org/10.1016/j.jtumed.2016.11.006 DOI: https://doi.org/10.1016/j.jtumed.2016.11.006
Siller-Sánchez, A., Luna-Sánchez, K. A., Bautista-Hernández, I., & Chávez-González, M. L. (2024). Use of Grape Pomace from the Wine Industry for the Extraction of Valuable Compounds with Potential Use in the Food Industry. Current Food Science and Technology Reports, 2(1), 7–16. https://doi.org/10.1007/s43555-024-00020-0 DOI: https://doi.org/10.1007/s43555-024-00020-0
Stachnik, M., & Bać, A. (2017). Bioactive compounds in foods.
Subramaniam, S., Selvaduray, K. R., & Radhakrishnan, A. K. (2019). Bioactive Compounds: Natural Defense Against Cancer? Biomolecules, 9(12), 758. https://doi.org/10.3390/biom9120758 DOI: https://doi.org/10.3390/biom9120758
Yilmaz, M., Kantarjian, H., & Ravandi, F. (2021). Acute promyelocytic leukemia current treatment algorithms. Blood Cancer Journal, 11(6), 1–9. https://doi.org/10.1038/s41408-021-00514-3 DOI: https://doi.org/10.1038/s41408-021-00514-3
Yoshida, C., Yamaguchi, H., Doki, N., Murai, K., Iino, M., Hatta, Y., Onizuka, M., Yokose, N., Fujimaki, K., Hagihara, M., Oshikawa, G., Murayama, K., Kumagai, T., Kimura, S., Najima, Y., Iriyama, N., Tsutsumi, I., Oba, K., Kojima, H., … Inokuchi, K. (2023). Importance of TKI treatment duration in treatment-free remission of chronic myeloid leukemia: Results of the D-FREE study. International Journal of Hematology, 117(5), 694–705. https://doi.org/10.1007/s12185-023-03549-3 DOI: https://doi.org/10.1007/s12185-023-03549-3
Zhao, F., Wang, J., Wang, W., Lyu, L., Wu, W., & Li, W. (2023). The Extraction and High Antiproliferative Effect of Anthocyanin from Gardenblue Blueberry. Molecules, 28(6), Article 6. https://doi.org/10.3390/molecules28062850 DOI: https://doi.org/10.3390/molecules28062850
Zinzalla, G., & Thurston, D. E. (2009). Targeting Protein–Protein Interactions for Therapeutic Intervention: A Challenge for the Future. Future Medicinal Chemistry, 1(1), 65–93. https://doi.org/10.4155/fmc.09.12 DOI: https://doi.org/10.4155/fmc.09.12
Authors
Copyright (c) 2025 Muhammad Hamza Afzal, Liudmila Nadtochii

This work is licensed under a Creative Commons Attribution 4.0 International License.