Classification of Beef and Pork Using a Hybrid Model of ResNet-50 and Support Vector Machine (SVM)
Abstract
Some people manipulate sales in marketplaces and other retail settings by combining beef and pork since the prices are so high. In addition to educating the public about these distinctions, this research aims to develop a technological solution for recognizing and differentiating between pork and beef. The proposed hybrid model, a combination of a Resnet-50 and a Support Vector Machine (SVM), is introduced for the classification of Beef and Pork Meat. In this hybrid model, the Resnet-50 functions as a powerful feature extractor, then utilizing its inherent ability to automatically capture distinctive features from diverse and highly specific meat image datasets. The SVM, serving as the binary classifier, effectively utilizes the extracted features for precise classification. The hybrid model achieves an outstanding accuracy of 100%, surpassing the performance of individual classifiers, with Resnet-50 achieving 97% accuracy and Resnet-50 achieving 97% obtained from the Hybrid model by gaining the best parameter C is 0,1 and the Kernel is linear. This remarkable outcome signifies the synergistic effectiveness of combining Resnet-50 and SVM.
Full text article
References
Agarap, A. F. (2017). An Architecture Combining Convolutional Neural Network (CNN) and Support Vector Machine (SVM) for Image Classification, Retrieved from http://arxiv.org/abs/1712.03541
Ahlawat, S., & Choudhary, A. (2020). Hybrid CNN-SVM Classifier for Handwritten Digit Recognition. Procedia Computer Science, 167, 2554–2560. https://doi.org/10.1016/j.procs.2020.03.309 DOI: https://doi.org/10.1016/j.procs.2020.03.309
Akhtar, S., Kumar, A., Ekbal, A., & Bhattacharyya, P. (2016). A Hybrid Deep Learning Architecture for Sentiment Analysis. https://www.domo.com/learn/data-never-sleeps-2
Asmara, R. A., Romario, R., Batubulan, K. S., Rohadi, E., Siradjuddin, I., Ronilaya, F., Ariyanto, R., Rahmad, C., & Rahutomo, F. (2018). Classification of pork and beef meat images using extraction of color and texture feature by Grey Level Co-Occurrence Matrix method. IOP Conference Series: Materials Science and Engineering, 434(1). https://doi.org/10.1088/1757899X/434/1/012072 DOI: https://doi.org/10.1088/1757-899X/434/1/012072
Attokaren, D. J., Fernandes, I. G., Sriram, A., Murthy, Y. V. S., & Koolagudi, S. G. (2017). Food classification from images using convolutional neural networks. IEEE Region 10 Annual International Conference, Proceedings/TENCON, 2017-Decem, 2801–2806. https://doi.org/10.1109/Tencon.2017.8228338 DOI: https://doi.org/10.1109/TENCON.2017.8228338
Balarabe, A. T., & Jordanov, I. (2021). Lulc Image Classification With Convolutional Neural Network. International Geoscience and Remote Sensing Symposium (IGARSS), 3, 5985–5988. https://doi.org/10.1109/igarss47720.2021.9555015 DOI: https://doi.org/10.1109/IGARSS47720.2021.9555015
Datumaya, W.S A., Alfian Bastami, A., & Rahmad, C., (2021). Pemilihan daging kelapa bermutu berdasarkan warna dan tekstur untuk produksi wingko berkualitas menggunakan metode support vector machine (SVM) dan fusi informasi. Jurnal Teknologi Informasi Dan Ilmu Komputer, 8(3), 587-594. https://doi.org/10.25126/jtiik.2021834391 DOI: https://doi.org/10.25126/jtiik.2021834391
Eroğlu, Y., Yildirim, M., & Çinar, A. (2021). Convolutional Neural Networks based classification of breast ultrasonography images by hybrid method with respect to benign, malignant, and normal using mRMR. Computers in Biology and Medicine, 133. https://doi.org/10.1016/j.compbiomed.2021.104407 DOI: https://doi.org/10.1016/j.compbiomed.2021.104407
Farinda, R., Gede, I., Wijaya, P. S., Bimantoro, F., Firmansyah, Z., Sulton, C., & Wijaya, S. (2018). Beef Quality Classification based on Texture and Color Features using SVM Classifier Pembuatan Aplikasi Catalog 3D Desain Rumah Sebagai Sarana Promosi Dengan Menggunakan Unity 3D View project Pornographic Image Recognition View project Beef Quality Classification based on Texture and Color Features using SVM Classifier. Journal of Telematics and Informatics, 6(3), 201–213. https://doi.org/10.12928/jti.v6i3
Fitrianto, A., & Sartono, B. (2021). Image Classification of Beef and Pork Using Convolutional Neural Network in Keras Framework. International journal of science, engineering, and information technology. 5(2). https://doi.org/10.21107/ijseit.v5i02.9864 DOI: https://doi.org/10.21107/ijseit.v5i02.9864
İnik, Ö., & Turan, B. (2018). Classification of Animals with Different Deep Learning Models. Journal of New Results in Science, 7(1), 9-16. Retrieved from https://dergipark.org.tr/en/pub/jnrs/issue/36616/387258#article_cite
Junayed, M. S., Jeny, A. A., Atik, S. T., Neehal, N., Karim, A., Azam, S., & Shanmugam, B. (2019). AcneNet - A deep CNN based classification approach for acne classes. Proceedings of 2019 International Conference on Information and Communication Technology and Systems, ICTS 2019, 203–208. https://doi.org/10.1109/ICTS.2019.8850935 DOI: https://doi.org/10.1109/ICTS.2019.8850935
Karthik, B. U., & Muthupandi, G. (2023). SVM and CNN based skin tumor classification using WLS smoothing filter. Optik, 272. https://doi.org/10.1016/j.ijleo.2022.170337 DOI: https://doi.org/10.1016/j.ijleo.2022.170337
Khairandish, M. O., Sharma, M., Jain, V., Chatterjee, J. M., & Jhanjhi, N. Z. (2022). A Hybrid CNN-SVM Threshold Segmentation Approach for Tumor Detection and Classification of MRI Brain Images. IRBM, 43(4), 290–299. https://doi.org/10.1016/j.irbm.2021.06.003 DOI: https://doi.org/10.1016/j.irbm.2021.06.003
Komuro, J., Kusumoto, D., Hashimoto, H., & Yuasa, S. (2023). Machine learning in cardiology: Clinical application and basic research. In Journal of Cardiology. Japanese College of Cardiology (Nippon-Sinzobyo-Gakkai) https://doi.org/10.1016/j.jjcc.2023.04.020
Komuro, J., Kusumoto, D., Hashimoto, H., & Yuasa, S. (2023). Machine learning in cardiology: Clinical application and basic research. In Journal of Cardiology. Japanese College of Cardiology (Nippon-Sinzobyo-Gakkai). https://doi.org/10.1016/j.jjcc.2023.04.020 DOI: https://doi.org/10.1016/j.jjcc.2023.04.020
Kuhlman, D. (2009). A Python Book: Beginning Python, Advanced Python, and Python Exercises.
Lee, J. M., Jung, I. H., & Hwang, K. (2022). Classification of Beef by Using Artificial Intelligence. Webology, 19(1), 4639–4647. https://doi.org/10.14704/web/v19i1/web19308 DOI: https://doi.org/10.14704/WEB/V19I1/WEB19308
Li, Q., & Yang, W. (2023). An effective vehicle road scene recognition based on improved deep learning. Measurement: Sensors, 30, 100916. https://doi.org/10.1016/j.measen.2023.100916 DOI: https://doi.org/10.1016/j.measen.2023.100916
Lihayati, N., Pawening, R. E., Furqan, M., Informatika, J. T., Jadid, N., & Probolinggo, P. (2016). Klasifikasi Jenis Daging Berdasarkan Tekstur Menggunakan Metode Gray Level Coocurent Matrix. Prosiding SENTIA 2016-Politeknik Negeri Malang. Retrieved from https://risbang.unuja.ac.id/media/arsip/upload_file_sertifikat_dan_surat_tugas/2016_Furqon_Jenis_Dagang.pdf
Navaneeth, B., & Suchetha, M. (2019). PSO optimized 1-D CNN-SVM architecture for real-time detection and classification applications. Computers in Biology and Medicine, 108, 85–92. https://doi.org/10.1016/j.compbiomed.2019.03.017 DOI: https://doi.org/10.1016/j.compbiomed.2019.03.017
Neneng, N., Adi, K., & Isnanto, R. (2016). Support Vector Machine Untuk Klasifikasi Citra Jenis Daging Berdasarkan Tekstur Menggunakan Ekstraksi Ciri Gray Level Co-Occurrence Matrices (GLCM). Jurnal Sistem Informasi Bisnis, 6(1), 1. https://doi.org/10.21456/vol6iss1pp1-10 DOI: https://doi.org/10.21456/vol6iss1pp1-10
Nuhraini, F., & Reza Ferasyi, T. (2018). Study of Beef Consumer Consideration Based On the Concept of Halal and Economic Factors in Butchery of Lambaro, Aceh Besar. Jurnal Medika Veterinaria. 12(1), 62–69. https://doi.org/10.21157/j.med.vet.v1 DOI: https://doi.org/10.21157/j.med.vet..v12i1.4115
Pauly, L., Peel, H., Luo, S., Hogg, D., & Fuentes, R. (2017). Deeper Networks for Pavement Crack Detection. 34th International Symposium in Automation and Robotics in Construction. https://doi.org/10.22260/ISARC2017/0066 DOI: https://doi.org/10.22260/ISARC2017/0066
Rustinsyah, R. (2019). The significance of social relations in rural development: A case study of a beef-cattle farmer group in Indonesia. Journal of Co-Operative Organization and Management, 7(2). https://doi.org/10.1016/j.jcom.2019.100088 DOI: https://doi.org/10.1016/j.jcom.2019.100088
Srikantamurthy, M. M., Rallabandi, V. P. S., Dudekula, D. B., Natarajan, S., & Park, J. (2023). Classification of benign and malignant subtypes of breast cancer histopathology imaging using hybrid CNN-LSTM based transfer learning. BMC Medical Imaging, 23(1). https://doi.org/10.1186/s12880-023-00964-0 DOI: https://doi.org/10.1186/s12880-023-00964-0
Tian, Y., Su, D., Lauria, S., & Liu, X. (2022). Recent advances on loss functions in deep learning for computer vision. In Neurocomputing (Vol. 497, pp. 129–158). Elsevier B.V. https://doi.org/10.1016/j.neucom.2022.04.127 DOI: https://doi.org/10.1016/j.neucom.2022.04.127
Utami Putri, N., & Redi Susanto, E. (2020). Klasifikasi Jenis Kayu Menggunakan Support Vector Machine Berdasarkan Ciri Tekstur Local Binary Pattern. CYBERNETICS, 4(02), 93–100. http://dx.doi.org/10.29406/cbn.v4i02.2324 DOI: https://doi.org/10.29406/cbn.v4i02.2324
Wulandari, I., Yasin, H., & Widiharih, T. (2020). Klasifikasi Citra Digital Bumbu Dan Rempah Dengan Algoritma Convolutional Neural Network (CNN). https://ejournal3.undip.ac.id/index.php/gaussi/ DOI: https://doi.org/10.14710/j.gauss.v9i3.27416
Authors
Copyright (c) 2025 Imam Syaukani, Siti Zarina Binti Mohd Muji, Chessda Uttraphan Eh Kan

This work is licensed under a Creative Commons Attribution 4.0 International License.