Classification of Beef and Pork Using a Hybrid Model of ResNet-50 and Support Vector Machine (SVM)

Imam Syaukani (1), Siti Zarina Binti Mohd Muji (2), Chessda Uttraphan Eh Kan (3)
(1) Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat, Malaysia,
(2) Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat, Malaysia, Malaysia,
(3) Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat, Malaysia, Malaysia

Abstract

Some people manipulate sales in marketplaces and other retail settings by combining beef and pork since the prices are so high.  In addition to educating the public about these distinctions, this research aims to develop a technological solution for recognizing and differentiating between pork and beef.  The proposed hybrid model, a combination of a Resnet-50 and a Support Vector Machine (SVM), is introduced for the classification of Beef and Pork Meat.  In this hybrid model, the Resnet-50 functions as a powerful feature extractor, then utilizing its inherent ability to automatically capture distinctive features from diverse and highly specific meat image datasets. The SVM, serving as the binary classifier, effectively utilizes the extracted features for precise classification. The hybrid model achieves an outstanding accuracy of 100%, surpassing the performance of individual classifiers, with Resnet-50 achieving 97% accuracy and Resnet-50 achieving 97% obtained from the Hybrid model by gaining the best parameter C is 0,1 and the Kernel is linear. This remarkable outcome signifies the synergistic effectiveness of combining Resnet-50 and SVM.

Full text article

Generated from XML file

References

Agarap, A. F. (2017). An Architecture Combining Convolutional Neural Network (CNN) and Support Vector Machine (SVM) for Image Classification, Retrieved from http://arxiv.org/abs/1712.03541

Ahlawat, S., & Choudhary, A. (2020). Hybrid CNN-SVM Classifier for Handwritten Digit Recognition. Procedia Computer Science, 167, 2554–2560. https://doi.org/10.1016/j.procs.2020.03.309 DOI: https://doi.org/10.1016/j.procs.2020.03.309

Akhtar, S., Kumar, A., Ekbal, A., & Bhattacharyya, P. (2016). A Hybrid Deep Learning Architecture for Sentiment Analysis. https://www.domo.com/learn/data-never-sleeps-2

Asmara, R. A., Romario, R., Batubulan, K. S., Rohadi, E., Siradjuddin, I., Ronilaya, F., Ariyanto, R., Rahmad, C., & Rahutomo, F. (2018). Classification of pork and beef meat images using extraction of color and texture feature by Grey Level Co-Occurrence Matrix method. IOP Conference Series: Materials Science and Engineering, 434(1). https://doi.org/10.1088/1757899X/434/1/012072 DOI: https://doi.org/10.1088/1757-899X/434/1/012072

Attokaren, D. J., Fernandes, I. G., Sriram, A., Murthy, Y. V. S., & Koolagudi, S. G. (2017). Food classification from images using convolutional neural networks. IEEE Region 10 Annual International Conference, Proceedings/TENCON, 2017-Decem, 2801–2806. https://doi.org/10.1109/Tencon.2017.8228338 DOI: https://doi.org/10.1109/TENCON.2017.8228338

Balarabe, A. T., & Jordanov, I. (2021). Lulc Image Classification With Convolutional Neural Network. International Geoscience and Remote Sensing Symposium (IGARSS), 3, 5985–5988. https://doi.org/10.1109/igarss47720.2021.9555015 DOI: https://doi.org/10.1109/IGARSS47720.2021.9555015

Datumaya, W.S A., Alfian Bastami, A., & Rahmad, C., (2021). Pemilihan daging kelapa bermutu berdasarkan warna dan tekstur untuk produksi wingko berkualitas menggunakan metode support vector machine (SVM) dan fusi informasi. Jurnal Teknologi Informasi Dan Ilmu Komputer, 8(3), 587-594. https://doi.org/10.25126/jtiik.2021834391 DOI: https://doi.org/10.25126/jtiik.2021834391

Eroğlu, Y., Yildirim, M., & Çinar, A. (2021). Convolutional Neural Networks based classification of breast ultrasonography images by hybrid method with respect to benign, malignant, and normal using mRMR. Computers in Biology and Medicine, 133. https://doi.org/10.1016/j.compbiomed.2021.104407 DOI: https://doi.org/10.1016/j.compbiomed.2021.104407

Farinda, R., Gede, I., Wijaya, P. S., Bimantoro, F., Firmansyah, Z., Sulton, C., & Wijaya, S. (2018). Beef Quality Classification based on Texture and Color Features using SVM Classifier Pembuatan Aplikasi Catalog 3D Desain Rumah Sebagai Sarana Promosi Dengan Menggunakan Unity 3D View project Pornographic Image Recognition View project Beef Quality Classification based on Texture and Color Features using SVM Classifier. Journal of Telematics and Informatics, 6(3), 201–213. https://doi.org/10.12928/jti.v6i3

Fitrianto, A., & Sartono, B. (2021). Image Classification of Beef and Pork Using Convolutional Neural Network in Keras Framework. International journal of science, engineering, and information technology. 5(2). https://doi.org/10.21107/ijseit.v5i02.9864 DOI: https://doi.org/10.21107/ijseit.v5i02.9864

İnik, Ö., & Turan, B. (2018). Classification of Animals with Different Deep Learning Models. Journal of New Results in Science, 7(1), 9-16. Retrieved from https://dergipark.org.tr/en/pub/jnrs/issue/36616/387258#article_cite

Junayed, M. S., Jeny, A. A., Atik, S. T., Neehal, N., Karim, A., Azam, S., & Shanmugam, B. (2019). AcneNet - A deep CNN based classification approach for acne classes. Proceedings of 2019 International Conference on Information and Communication Technology and Systems, ICTS 2019, 203–208. https://doi.org/10.1109/ICTS.2019.8850935 DOI: https://doi.org/10.1109/ICTS.2019.8850935

Karthik, B. U., & Muthupandi, G. (2023). SVM and CNN based skin tumor classification using WLS smoothing filter. Optik, 272. https://doi.org/10.1016/j.ijleo.2022.170337 DOI: https://doi.org/10.1016/j.ijleo.2022.170337

Khairandish, M. O., Sharma, M., Jain, V., Chatterjee, J. M., & Jhanjhi, N. Z. (2022). A Hybrid CNN-SVM Threshold Segmentation Approach for Tumor Detection and Classification of MRI Brain Images. IRBM, 43(4), 290–299. https://doi.org/10.1016/j.irbm.2021.06.003 DOI: https://doi.org/10.1016/j.irbm.2021.06.003

Komuro, J., Kusumoto, D., Hashimoto, H., & Yuasa, S. (2023). Machine learning in cardiology: Clinical application and basic research. In Journal of Cardiology. Japanese College of Cardiology (Nippon-Sinzobyo-Gakkai) https://doi.org/10.1016/j.jjcc.2023.04.020

Komuro, J., Kusumoto, D., Hashimoto, H., & Yuasa, S. (2023). Machine learning in cardiology: Clinical application and basic research. In Journal of Cardiology. Japanese College of Cardiology (Nippon-Sinzobyo-Gakkai). https://doi.org/10.1016/j.jjcc.2023.04.020 DOI: https://doi.org/10.1016/j.jjcc.2023.04.020

Kuhlman, D. (2009). A Python Book: Beginning Python, Advanced Python, and Python Exercises.

Lee, J. M., Jung, I. H., & Hwang, K. (2022). Classification of Beef by Using Artificial Intelligence. Webology, 19(1), 4639–4647. https://doi.org/10.14704/web/v19i1/web19308 DOI: https://doi.org/10.14704/WEB/V19I1/WEB19308

Li, Q., & Yang, W. (2023). An effective vehicle road scene recognition based on improved deep learning. Measurement: Sensors, 30, 100916. https://doi.org/10.1016/j.measen.2023.100916 DOI: https://doi.org/10.1016/j.measen.2023.100916

Lihayati, N., Pawening, R. E., Furqan, M., Informatika, J. T., Jadid, N., & Probolinggo, P. (2016). Klasifikasi Jenis Daging Berdasarkan Tekstur Menggunakan Metode Gray Level Coocurent Matrix. Prosiding SENTIA 2016-Politeknik Negeri Malang. Retrieved from https://risbang.unuja.ac.id/media/arsip/upload_file_sertifikat_dan_surat_tugas/2016_Furqon_Jenis_Dagang.pdf

Navaneeth, B., & Suchetha, M. (2019). PSO optimized 1-D CNN-SVM architecture for real-time detection and classification applications. Computers in Biology and Medicine, 108, 85–92. https://doi.org/10.1016/j.compbiomed.2019.03.017 DOI: https://doi.org/10.1016/j.compbiomed.2019.03.017

Neneng, N., Adi, K., & Isnanto, R. (2016). Support Vector Machine Untuk Klasifikasi Citra Jenis Daging Berdasarkan Tekstur Menggunakan Ekstraksi Ciri Gray Level Co-Occurrence Matrices (GLCM). Jurnal Sistem Informasi Bisnis, 6(1), 1. https://doi.org/10.21456/vol6iss1pp1-10 DOI: https://doi.org/10.21456/vol6iss1pp1-10

Nuhraini, F., & Reza Ferasyi, T. (2018). Study of Beef Consumer Consideration Based On the Concept of Halal and Economic Factors in Butchery of Lambaro, Aceh Besar. Jurnal Medika Veterinaria. 12(1), 62–69. https://doi.org/10.21157/j.med.vet.v1 DOI: https://doi.org/10.21157/j.med.vet..v12i1.4115

Pauly, L., Peel, H., Luo, S., Hogg, D., & Fuentes, R. (2017). Deeper Networks for Pavement Crack Detection. 34th International Symposium in Automation and Robotics in Construction. https://doi.org/10.22260/ISARC2017/0066 DOI: https://doi.org/10.22260/ISARC2017/0066

Rustinsyah, R. (2019). The significance of social relations in rural development: A case study of a beef-cattle farmer group in Indonesia. Journal of Co-Operative Organization and Management, 7(2). https://doi.org/10.1016/j.jcom.2019.100088 DOI: https://doi.org/10.1016/j.jcom.2019.100088

Srikantamurthy, M. M., Rallabandi, V. P. S., Dudekula, D. B., Natarajan, S., & Park, J. (2023). Classification of benign and malignant subtypes of breast cancer histopathology imaging using hybrid CNN-LSTM based transfer learning. BMC Medical Imaging, 23(1). https://doi.org/10.1186/s12880-023-00964-0 DOI: https://doi.org/10.1186/s12880-023-00964-0

Tian, Y., Su, D., Lauria, S., & Liu, X. (2022). Recent advances on loss functions in deep learning for computer vision. In Neurocomputing (Vol. 497, pp. 129–158). Elsevier B.V. https://doi.org/10.1016/j.neucom.2022.04.127 DOI: https://doi.org/10.1016/j.neucom.2022.04.127

Utami Putri, N., & Redi Susanto, E. (2020). Klasifikasi Jenis Kayu Menggunakan Support Vector Machine Berdasarkan Ciri Tekstur Local Binary Pattern. CYBERNETICS, 4(02), 93–100. http://dx.doi.org/10.29406/cbn.v4i02.2324 DOI: https://doi.org/10.29406/cbn.v4i02.2324

Wulandari, I., Yasin, H., & Widiharih, T. (2020). Klasifikasi Citra Digital Bumbu Dan Rempah Dengan Algoritma Convolutional Neural Network (CNN). https://ejournal3.undip.ac.id/index.php/gaussi/ DOI: https://doi.org/10.14710/j.gauss.v9i3.27416

Authors

Imam Syaukani
[email protected] (Primary Contact)
Siti Zarina Binti Mohd Muji
Chessda Uttraphan Eh Kan
Syaukani, I., Muji, S. Z. B. M., & Eh Kan, C. U. (2025). Classification of Beef and Pork Using a Hybrid Model of ResNet-50 and Support Vector Machine (SVM) . AMPLITUDO : Journal of Science and Technology Innovation, 4(1), 65–70. https://doi.org/10.56566/amplitudo.v4i1.193

Article Details