Paddy Price Prediction using Fuzzy Time Series Model Lee Method for Determination of Crop Insurance Premiums
Authors
Agus Sofian Eka Hidayat , Deati Amanifalah , Gilang PrimajatiDOI:
10.56566/sigmamu.v2i2.280Published:
2024-09-30Issue:
Vol. 2 No. 2 (2024): SeptemberKeywords:
Fuzzy, Lee model, Crop, InsuranceArticles
Downloads
How to Cite
Metrics
Abstract
The price of the paddy has significant fluctuations as BPS mentioned that the average price of dry paddy harvested at the farmer level decreased in February 2022 by 3.2% from January 2022. Hence, crop industry businesses continue to face significant uncertainty risk. The purpose of this study is to discuss the use of the Fuzzy Time Series Model Lee for predicting future paddy prices in order to calculate crop insurance premium using Black Scholes model with cash or nothing put option approach. This is because crop industry is one of the agricultural products that Indonesia is capable of producing in large quantities. As a result, crop insurance should be purchased by farmers to protect against crop yield losses. Aside from that, the price of paddy fluctuates significantly. Therefore to reduce the loss of revenue from reductions in decreasing of crop yield or even crop failure, it needs to provide the insurance based on the paddy prices to protect the paddy prices itself from the large fluctuations at the farmer level. Based on the analysis of this study, generates result for January 2022, February 2022, and March 2022 are 4547.41, 4547.41, and 4701.62 respectively. With the accuracy level is 0.05%. Therefore, the insurance premiums based on the prediction result is 2,775,579. The implication or benefit of this thesis is for the other parties such as farmer
References
Anonymous. (2022). Retrieved August 10, 2023, from https://pangannews.id/berita/1671094236/kementan-dampak-perubahan-iklim-2022-lebih-rendah-bahkan-produksi-padi-surplus
Anoraga, Pandji. (2008). Pengantar Pasar Modal. Rineka Cipta. Jakarta. 72
Arimbawa, K., & Puja, I. B. (2013). Komparasi Metode ANFIS dam Fuzzy Time Series Kasus Peramalan Jumlah Wisatawan Australia ke Bali. Jurnal Elektronik Matematika, 18 – 26.
Bhandari, P. (2023). Normal Distribution Examples, Formulas, & Uses. Retrieved March 13, 2023, from https://www.scribbr.com
Boaisha, S. M., and Amaitik, S. M. (2010). Forecasting Mode Based on Fuzzy Time Series Approach. Proceedings of the 11th International Arab Conference on Information Technology-ACIT.
BPS. (n.d.). Retrieved February 12, 2023, from https://www.bps.go.id/indicator/36/1034/1/rata-rata-harga-gabah-bulanan-menurut-kualitas-komponen-mutu-dan-hpp-di-tingkat-petani.html
Cryer, Jonathan (2008). Time Series Analysis with Applications in R Second Edition. Springer Science. ISBN: 978-0-387-75958-6.
Cunningham, et al. (2006). Models for Quantifying Risk Second Edition. ACTEX Publication, Inc. ISBN 13: 978-56698-584-0.
Darmawan, D. (2022). Harga Gabah dan Beras Turun Sebelum Puncak Panen Raya. Retrieved January 29, 2023, from https://www.republika.co.id
Falcon, Timothy. (2009). Basic Black Scholes: Option Pricing and Trading. ISBN:0-9700552-4-2.
Ghani, M. I. (2021). Distribusi Binomial dan Bernoulli. Retrieved March 2, 2023, from https://www.zenius.net
Handayani, L., & Anggriani, D. (2015). Perbandingan Model Chen dan Lee Pada Metode Fuzzy Time Series Untuk Prediksi Harga Emas. Jurnal Mahasiswa Informatika Pseucode.
Haris, M. S. (2010). Implementasi Metode Fuzzy Time Series Dengan Penentuan Interval Berbasis Rata-rata untuk Peramalan Data Penjualan Bulanan. Research Gate.
Hidayat, A. E., & Gunardi. (2019). Calculation of Crop Insurance Premium Based On Dependence among Yield Price, Crop Yield, and Standard Rainfall Index using Vine Copula. AIP Publishing.
Higham, Desmond. (2004). An Introduction to Financial Option Valuation. Cambridge University Press. ISBN-13: 978-0-511-33704-8.
Husnan, Suad. (1994). Dasar-Dasar Teori Portofolio dan Analisis Sekuritas, Yogyakarta: UPPAMP YKPN. 331.
Hull, J. C. (2009). Options, Futures, and Other Derivatives Seventh Edition. Pearson Education International. 264.
Imami, A. I. (2013). Metode Fuzzy Time Series dengan Faktor Pendukung untuk Meramalkan Data Saham. Repository Universitas Pendidikan Indonesia.
Joharni. (2017). Penentuan Harga Opsi Tipe Eropa dengan menggunakan Model Fraksional Black Scholes. UIN Alauddin Makassar.
Kurniawan, O. T. S. (2012). Penentuan Harga Opsi Saham Dengan Menggunakan Metode Beda Hingga Crank-Nicholson (C-N). e-Journal Matematika. Vol.1 No. 1 Agustus 2012, 20-24.
Kusdarwati, H., Effendi, U., & Handoyo, S. (2022). Analisis Deret Waktu Univariat Linier: Teori dan Terapannya dengan Rstudio. Universitas Brawijaya Press.
Kusnadi, A., Putra, I. (2015). Rancang Bangun Sistem Pakar Prediksi Stres Belajar Dengan Neural Network Algoritma Backpropagation. Jurnal Universitas Multimedia Nusantara, ISSN 2085-4552.
Kusuma, Sani, et al. (2020). Pengaruh Jumlah Fungsi Keanggotaan pada Metode Fuzzy Logic terhadap Hasil Peramalan Beban Listrik Jangka Panjang. Jurnal Spektrum. Vol, 7, No. 1.
Lestari, Khanty Intan, et al. (2017). Penggunaan Metode Fuzzy Time Series Untuk Meramalkan Hasil Produksi Padi Kabupaten Majalengka. Jurnal Seminar Statistika UNPAD 2017 (SNS VI), ISSN : 2087 – 2590. Universitas Padjadjaran Bandung.
Nugraha, K.A., Santoso, A. J., & Suselo T. (2013). Algoritma Backpropagation Pada Jaringan Saraf Tiruan Untuk Pengenalan Pola Wayang Kulit. Journal Online UPN Veteran Yogyakarta. ISSN: 1979-2328. UPN Veteran Yogyakarta.
Pasaribu, S. M. (2014). Penerapan Asuransi Pertanian Di Indonesia. Badan Litbang Pertanian.
Patria, L. (2021). Fuzzy Time Series Application in Predicting the Number of Confirmation Cases of Covid-19 Patients in Indonesia. International Journal of Quantitative Research and Modeling Vol. 2, No. 4. Universitas Terbuka.
Anggriani, I., Nurhayati, S., & Subchan, S. (2018). Analisis Kestabilan Model Penurunan Sumber Daya Hutan Akibat Industri. Limits: Journal of Mathematics and Its Applications, 15(1), 31. https://doi.org/10.12962/limits.v15i1.3560
Asmaidi, T. S. A. (2021). Pemodelan Matematika Penyebaran COVID19 Tipe SV1V2EIR. Jurnal ASEECT, 2(2), 11–15.
Clarke, G. L. (1954). Elements of Ecology. Chapman & Hall.
D. K. Arrowsmith, C. M. P. (n.d.). Dynamical Systems: Differential Equations, Maps, and Chaotic Behaviour. Chapman & Hall, 1992.
G. A. Ngwa and W. S. Shu. (2000). , “A mathematical model for endemic malaria with variable human and mosquito populations,” Math. Comput. Model., vol. 32, no. 7–8, 2000, doi: 10.1016/S0895- 7177(00)00169-2. Math. Comput. Model, 32(7–8).
Jumainisa, S., Darmawijoyo. & Hartono, Y. (2018). “Pengembangan Soal Mathematical Modelling Menggunakan Konteks Kesehatan Kelas V Sekolah Dasar”. Prosiding Seminar Nasional Stkip Pgri Sumatera Barat, 4(1).
Listyana, L. (2016). Analisis Bifurkasi pada Model Matematika Predator – Prey dengan Dua Predator. Universitas Negeri Yogyakarta.
Moneim, I. A., & Khalil, H. A. (2015). Modelling and Simulation of the Spread of HBV Disease with Infectious Latent. Applied Mathematics, 06(05), 745–753. https://doi.org/10.4236/am.2015.65070
Monica, Ritanica, dkk. (2014). Kestabilan Populasi Model Lotka – Volterra Tiga Spesies dengan Titik Keseimbangan. JOM FMIPA Volume 1 No. 2 Oktober 2014., 1(2).
Nurhamiyawan, E. N. L., Prihandono, B., & Helmi. (2018). Analisis Dinamika Model Kompetisi Dua Populasi yang Hidup Bersama di Titik Kesetimbangan Tidak Terdefinisi. Buletin Ilmiah Matematika Statistika Dan Terapannya, 02(3), 197–204.
Rosyid, F. (2012). Analisis Kestabilan dan Limit Cycle pada Model Predator – Prey Tipe Gause. Skripsi.
S. Side, W. Sanusi, and N. K. Rustan. (2020). “Model matematika SIR sebagai solusi kecanduan penggunaan media sosial,.” J. Math. Comput. Stat, 3(2), 126.
Pishro, H. (2014). Introduction to Probability, Statistics, and Random Processes. International Kindle Paperwhite. ISBN: 978-0990637202.
Primajati, Gilang., et al. (2020). Barrier Options Model for Agricultural Commodity Price Protection. Journal Universitas Bumigora.
Putri, I.A.G.K., Dharmawan, K., and Tastrawati, N.K.T. (2017). Perhitungan Harga Premi Asuransi Pertanian yang Berbasis Indeks Curah Hujan Menggunakan Metode Black Scholes, E-Jurnal Matematika, Vol. 6 (2), hal 161-167.
Qosim, S., Dharmawan, K., and Harini, L.P.I. (2018). Penentuan Harga Premi Asuransi Pertanian Berbasis Indeks Curah Hujan dengan Menggunakan Metode Pembangkit Distribusi Eksponensial Campuran, E-Jurnal Matematika, Vol 7 (2), hal 141-147.
Rahman, Anita. (2010). Model Black Scholes Put Call parity Harga Opsi Tipe Eropa dengan Pembagian Dividen. Surakarta: USMS.
Song, Q. and Chissom, B. S. (1993). Forecasting enrollments with fuzzy time series-Part I. Fuzzy Sets and Systems, 54: 1-9.
Song, Q. and Chissom, B. S. (1994). Forecasting enrollments with fuzzy time series-Part II. Fuzzy Sets and Systems, 62: 1-8.
Susilo F. (2003). Himpunan dan Logika Kabur serta Aplikasinya. Yogyakarta: Graha Ilmu.
Togatorop, R.F., Maruddani, D.A., & Tarno. (2022). Perhitungan Harga Premi Asuransi Pertanian Komoditas Cabai Rawit Berbasis Indeks Curah Hujan dengan Metode Black-Scholes. Jurnal Gaussian, Vol. 11, No. 1. ISSN: 2339-2541.
Vaidya, Dheeraj. (2023). Normal Distribution. Retrieved March 13, 2023, from https://www.wallstreetmojo.com
Vio. (2021). 3 Pembagian Musim Tanam Padi sebagai Pedoman Budidaya Sektor Pertanian. Retrieved February 25, 2023, from www.kumparan.com
Wang, Y., Lei, Y., Fan, X., & Wang, Y. (2015). Intuitionistic Fuzzy Time Series Forecasting Model Based on Intuitionistic Fuzzy Reasoning. International Journal of Mathematical Problems in Engineering : 2016(1), 1-12. Universitas Pelita Harapan.
Widi, T. A. (2018). Perbandingan Model Chen Dan Lee Pada Metode Fuzzy Time Series Untuk Prediksi Harga Saham Bank BRI. Universitas Islam Indonesia Yogyakarta.
License
Copyright (c) 2024 Agus Sofian Eka Hidayat, Gilang Primajati

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.