Metric Dimension of the Pinwheel Subdivision Graph K_1+mK_3
DOI:
10.56566/sigmamu.v3i1.251Downloads
Abstract
Metric dimension is an important concept in graph theory that is widely used in various fields, including navigation, network localization, and network design. The concept of metric dimension is the concept of determining the least marker vertex so that each vertex in the graph is distinguished from each other. The purpose of this research is to determine the metric dimension of the pinwheel subdivision graph ????1+????????3. The type of research used is pure research. By using graph structure and vertex distance analysis, this paper shows the value of the metric dimension of the subdivision graph ????(????,????), specifically on the pinwheel graph ????=????1+????????3 for 2≤????≤4. The results show that the metric dimension of the pinwheel subdivision graph ????1+????????3 is one less than the metric dimension of the pinwheel graph before subdivision, ????????????(????(????,????))=????????????(????)−1.
Keywords:
Metric Dimension Pinwheel Graph K_1+〖mK〗_3 Subdividing SetReferences
Amrullah, A. (2020). The Partition of a Subdivision of a Homogeneous Firecracker. Electronic Journal of Graph Theory and Applications. 8(2), 445-455 ,https://doi.org/10.5614/ejgta.2020.8.2.20
Amrullah, A., Azmi, S., Soeprianto, H., Turmuzi, M., Anwar, YS. (2019). The Partition Dimension Of Subdivision Graph On The Star. Journal of Physics: Conference Series. 1280 022037 https://doi.org/10.1088/1742-6596/1280/2/022037
Amrullah, A., Azmi, S., Turmuzi, M., Baidowi, Kurniati, N. (2021). The Bridge Graphs Partition Dimension, In Journal of Physics: Conference Series, IOP Publishing 1779(1). 012086. https://doi.org/10.1088/1742-6596/1779/1/012096
Amrullah, A., Baskoro, E. T., Uttunggadewa, S. & Simanjuntak, R. (2016). The Partition Dimension Of Subdivision Of a Graph. Procedia Computer Science. 74(2015). https://doi.org/10.1016/j.procs.2015.12.075
Franz, M.O., Scholkopf, B., Mallot, H.A., Bulthoff, H.H. (1998). Learning View Graphs For Robot Navigation. Autonomos Robot 5, 111-125.
G. Chartrand, L. Eroh, M.A. Johnson, and O.R. Oellerman. (2000). Resolv-ability in graphs and the metric dimension of graph. Discrete Appl. Math. 105, 99-113. https://doi.org/10.1016/S0166-218X(00)00198-0
Harary, F., & Melter, R.A. (1976). On The Metric Dimension Of Graph. Ars Combin. 2:191-195.
Haspika, Hasmawati, Aris, N. (2023). The Partition Dimension on the Grid Graph. Jurnal Matematika, Statistika, dan Komputasi. 19(2): 351-358. http://dx.doi.org/10.20956/j.v19i2.23904
Hidayanti, G., Amrullah, A., Kurniati, N., Hayati, L. (2022). Dimensi Metrik Graf Hasil Operasi Jembatan Dari Caterpillar Homogen Dan Pot Bunga Diperumum. Majalah Ilmiah Matematika dan Statistika. 22(1) 69-81. http://dx.doi.org/10.19184/mims.v22i1.30350
Khuller, S., Raghavachari, B. dan Rosenfeld, A. (1996). Landmarkin Graphs. Disecrete Appl. Math. (vol. 70, pp. 217-229). https://doi.org/10.1016/0166-218X(95)00106-2
Miller, M., Patel, D., Ryan, J., Sugeng, K.A., Slamin, S., Tuga, M. (2005). Exclusive Sum Labeling of Graphs. Journal of Combinatorial Mathematics and Combinatorial Computing. 55, 137-148. https://doi.org/10.1080/09728600.2009.12088878
P. J. Slater. (1975). Leaves Of Trees. Congressus Numerantium. 14:547-559.
Riyandho, R., Narwen, & Efendi. (2018). Dimensi Metrik Graf Kincir Pola K_1+mK_4. Jurnal Matematika UNAND. 7(3), 149-153. http://dx.doi.org/10.25077/jmu.7.3.149-153.2018
Wahyudi, S., Sumarno, & Suharmadi. (2011). Dimensi Metrik Pengembangan Graf Kincir Pola K_1+mK_3. J. Math. And Its Appl. 8(2), 17-22. http://dx.doi.org/10.12962/j1829605X.v8i2.1441
Yulianti, L., Hidayati, L., & Welyyanti, D. (2023). Dimensi Metrik Graf Buckminsterfullerene-Subdivisi dan Buckminsterfullerene-Star. Journal of Mathematics and Its Applications. 20(2), 219-229. http://dx.doi.org/10.12962/limits.v20i2.15397
License
Copyright (c) 2025 Vetty Sugiarty, Amrullah, Nurul Hikmah

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.













