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Abstract: A cure fraction models are usually meant for survival data that 
contains a proportion of non subject individuals for the event under study. In 
order to estimate the cure fraction, two models namely mixture model and 
non-mixture model were commonly deployed. In this work, mixture and non-
mixture cure fraction models were presented with survival data structure 
based on the beta-Weibull distribution. The beta-Weibull distribution is a four 
parameter distribution developed in this work as an alternative extension to 
the Weibull distribution in the analysis of lifetime data. The proposed 
extension allows the inclusion of covariates analysis in the model, in which 
the estimation of parameters were done under Bayesian approach using Gibbs 
sampling methods.  
 
Keywords: Bayesian analysis; Beta-Weibull distribution; Cure fraction 
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Introduction  

 
A suitable distribution is often of interest in the analysis of survival data proposed by (Pal et al., 

2014), as it provides insight into characteristics of failure times and hazard functions such as Weibull, 
Beta and Gamma distributions respectively given by, the probability density function of the 2-
parameter Weibull distribution is:  

 𝑓!(𝑡) = 𝛾𝜆𝑡"#$𝑒#%&! , 𝑡 ≥ 𝛾, 𝜆 > 0 (1) 
 

where 𝛾 is the shape parameter and 𝜆 is the scale parameter (mechanics & 1951, n.d.). 
The probability density function of the general Beta distribution is: 

 
𝑓!(𝑡) =

(𝑡 − 𝑎)'#$(𝑏 − 𝑡)(#$

𝐵(𝛼, 𝛽)(𝑏 − 1)')(#$ , 𝑎 ≤ 𝑡 ≤ 𝑏; 𝛼, 𝛽 ≥ 0 
(2) 

Where 𝛼 and 𝛽 are the shape parameters, 𝑎	and 𝑏 are the lower and upper bounds, respectively, of 
the distribution, and 𝐵(𝛼, 𝛽) is the beta function (Pal et al., 2014). 

The probability density function of the general Gamma distribution is: 
 

𝑓!(𝑡) =
7&#*
+
8
"#$

exp 7#&#*
+
8
"#$

𝛽Γ(𝛾) , 𝑡 ≥ 𝜇; 𝛽, 𝛾 ≥ 0 

(3) 

where 𝛾 is the shape parameter, 𝜇 is the location parameter, 𝛽 is the scale parameter, and Γ is the 
gamma function (Stacy, 1962) and 𝛼, 𝛽, 𝜆 are positive. The Weibull distribution is a very popular 
distribution which was named after (Waloddi & Stockholm, 1951), in 1951 a Swedish physicist. He 
used it in 1939 to analyze the breaking strength of materials (Carrasco et al., 2008). Due to the relative 
flexibility of its hazard function and the ease for estimation of its parameters, ever since it has been 
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widely used for analyzing lifetime data. It is one of the most commonly used families for modeling 
such data. However, only monotonically increasing and decreasing hazard functions can be 
generated from the classic two-parameter Weibull distribution (Carrasco et al., 2008). One of the 
limitation in Beta-Weibull (BW) distribution is that the survival and hazard functions cannot be 
expressed in a closed form, specifically when more covariates are considered, thus numerical 
approach that is the integration techniques are required to determine the estimate of parameters in 
the model. 

The cure fraction model (Achcar et al., 2012) is an extension to the conventional parametric 
survival models, which account for the fraction of individuals that will not experience the event of 
interest. Cure fraction models can also be referred to as long-term survival models in respect of the 
kind of event being specified. the two most typical cure models are the mixture and non-mixture 
models. The mixture cure rate model, otherwise called standard cure rate model, assumes that the 
studied population is a mixture of susceptible individuals, who experience the event of interest ”𝑝” 
which is the proportion of ”long-term survivors” or ”cured patients” regarding the event of interest 
(0 < 𝑝 < 1) and non-susceptible individuals that will never experience it ”(1 − 𝑝)”, 

The survival function for the entire population, denoted by 𝑆(𝑡) for this model is given by 
 
 𝑆(𝑡) = 𝑝 + (1 − 𝑝)𝑆!(𝑡), 𝑡 > 0 (4) 

 
Where 𝑆!(𝑡) is the standard parametric survival curve function for the susceptible individuals. The 
non-mixture cure rate model defines an asymptote for the cumulative hazard, and hence for the cure 
fraction. The survival function can be written as: 
 

 𝑆(𝑡) = 𝑝,"(&) = exp	(ln(𝑝)𝐹/(𝑡)), 𝑡 > 0 (5) 
 
Any parametric family of distribution can be incorporated into larger families through an 

application of the probability integral transform (Gelman et al., 2013; Wahed et al., 2009). So also, the 
BW density can be expressed as a mixture of Weibull density a contribution by (Cordeiro et al., 2013) 
who further drive an expression for their moment generating function and investigated that the 
potential usefulness of the BW distribution for modeling censored survival data from a breast cancer 
research. Recently, it has been found out in (Schwertman & de Silva, 2007) that the extension of the 
beta-Weibull distribution was proposed in the content of (Cordeiro et al., 2013). The beta modified 
Weibull distribution is another generalization of the Weibull distribution (Cordeiro, Nadarajah, et 
al., 2013). The distribution has an  edge due to its flexibility upon accommodation of multiple forms 
of risk function while handling various problems in survival data modeling (Wahed et al., 2009). 
Several literature suggest Bayesian formulation of the cure fraction model (Achcar et al., 2012). 
Numerous attempt on techniques for estimation of cure rates in the context when there are partially 
observed or missing covariate (Aljawadi et al., 2011; Gelman et al., 2013; Mudholkar et al., 1996; 
Tsodikov et al., 2003)  

 
Method  
 
Distributional assumptions and derivations 

We denote 𝐺!(𝑡) as the cummulative distribuion function (cdf) of a random variable T, which 
has a generalized class of distribution defined by:  

 

 
𝐹!(𝑡) = 𝐼0#(&)(𝛼, 𝛽) =

𝐵0#(&)(𝛼, 𝛽)
𝐵(𝛼, 𝛽)

=
∫ 𝑤1#$(1 − 𝑤)+#$𝑑𝑤0#(&)
!

𝐵(𝑎, 𝑏)  
(6) 

Where 𝛼 > 0, 𝛽 > 0, 𝐵(𝛼, 𝛽) = 2(1)2(+)
2(1,+)

 is the beta function,with associated gamma function given by 

Γ(𝛼) = ∫ 𝑧1#$𝑒#4𝑑𝑧5
! 	  and 𝐵0#(&)(𝛼, 𝛽)  is the incomplete beta function. If 𝐺!(𝑡)  in Equation (6) 

assumes a cdf of a normal distribution with mean 𝜇 and variance 𝜎6, we then have beta-normal 
distrbution, (Eugene et al., 2002). A model based on the cdf of the Weibull distribution with shape 
parameter 𝛾 and scale parameter 𝜆 assumes: 
 

 𝐺!(𝑡) = 1 − exp	[−7&
%
8
"
], 𝑡 > 0 (7) 

And from Equation (6), we subtitutute Equation (7) to have 
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 𝐹!(𝑡) =
$

7(1,+)∫ 𝑤1#$(1 − 𝑤)+#$𝑑𝑤$#89:	[#=$%>
!
]

! , 𝑡 > 0 (8) 
 
Now, in the context of survival analysis, the baseline survival function or standard parametric 

survival curve function for 
the susceptible individuals is given by 
 

 𝑆!(𝑡) = 1 − 𝐹!(𝑡). (9) 
 
We observed that the function cannot be expressed in a closed form reference to the limitation. 

The baseline probability density function of the BW distribution with four parameters is written as 
 

 𝑓!(𝑡) =
𝛾

𝜆"𝐵(𝛼, 𝛽) exp P−𝛽 Q
𝑡
𝜆R

"
S T1 − exp P−𝛽 Q

𝑡
𝜆R

"
SU
1#$

, 𝑡

> 0 
(10) 

 
Where 𝛼, 𝛽, 𝛾 and 𝜆 are all positive numbers. The corresponding hazard function is given by: 
 

 ℎ(𝑡) =
𝑓!(𝑡)
𝑆!(𝑡)

=
γ𝑡"#$𝜆"exp X−𝛽 7&

%
8
"
Y Z1 − exp X−𝛽 7&

%
8
"
Y[
1#$

𝐵(𝛼, 𝛽)∫ 𝑤1#$(1 − 𝑤)+#$𝑑𝑤$#89:	[#=$%>
!
]

!

, 𝑡 > 0 (11) 

 
Assuming the Mixture model, the likelihood function for 𝜃 = (𝛼, 𝛽, 𝛾, 𝜆, 𝑝) is given by 
 

 
𝐿@(𝜃) =^_

(1 − 𝑝)𝛾
𝜆"𝐵(𝛼, 𝛽) 𝑡A

"#$exp 7−𝛽 7&&%8
"
8 Q1 − exp X−𝛽 7&&%8

"
Y
1#$

R
B&
`

C

AD$

×^[𝑝 + (1 − 𝑝)𝑆!(𝑡A)]$#B&
C

AD$

. 
(12) 

 
Moreover, assuming the Non-mixture model, the likelihood function for 𝜃 = (𝛼, 𝛽, 𝛾, 𝜆, 𝑝)  is 

given by: 
 

 
𝐿@@(𝜃) =^_−

𝛾ln	(𝑝)
𝜆"𝐵(𝛼, 𝛽) 𝑡A

"#$exp 7−𝛽 7&&%8
"
8 Q1 − exp X−𝛽 7&&%8

"
Y
1#$

R
B&
`

C

AD$

×^[𝑝 + (1 − 𝑝)𝑆!(𝑡A)]$#B&
C

AD$

. 
(13) 

 
Further Incorporation 

Implementation of the conventional estimation methods especially maximization or direct 
methods on the likelihood functions 𝐿@(𝜃)  and 𝐿@@(𝜃)  are tedious and usually computationally 
expensive due to complexity of some distributional expressions. Bayesian Inference based on 
Markov Chain Monte Carlo (MCMC) estimation methods bring down those complexities without 
compromise to precision and thus utilized in our implementation in this work which was 
appropriately justified in . The vector of covariate 𝑋A which are closely related with proportion 𝑝 of 
cure rate fraction models were incorporated by replacing 𝑝 in the likelihood function expressions 
𝐿@(𝜃) and 𝐿@@(𝜃) with: 

 

 𝑝A(𝑡) =
exp	(𝑥AE𝜂′)

1 − exp	(𝑥AE𝜂′)
. (14) 

 
Where 𝑥AE = (1, 𝑥$ ,…,𝑥C)  is J covariates's  vector of observations for the ith individual and 𝜂′ =
(𝜂!,	𝜂$, … , 𝜂C) is the unknown parameters vector. To study the effect of vector of covariates 𝑊A on the 
parameter 𝜆, 𝜆 is replaced in both mixture and non-mixture expression of the likelihood function 
𝐿@(𝜃) and 𝐿@@(𝜃) by: 
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 𝜆A(𝑡) = exp	(𝑤AE𝜁E) (15) 
 
Where 𝐰𝐢

E = (𝟏,𝐰𝟏,…,𝐰𝐧) is the vector of the observations of K covariates for the i-th individual and 
𝛇E = (𝛇𝟏, 𝛇𝟐, … , 𝛇𝐧) is the vector of unknown parameters 
 
Bayesian Analysis  

We first consider a Bayesian analysis of the longterm survival models without considering 
covariates (Martinez et al., 2013), on the other hand we also presume the beta prior for the given 
probability of proportion ”𝑝” of cure models which is denoted by by 𝑝~𝐵(𝑎, 𝑏) where 𝑎 and 𝑏	are 
known hyper parameters (Achcar et al., 2012; Martinez et al., 2013). We also assume a gamma prior 
distribution for the parameters 𝛼, 𝛽, 𝛾	𝑎𝑛𝑑	𝜆 . That is 
𝛼~Γ(𝑐1 , 𝑑1), 𝛽~Γo𝑐+ , 𝑑+p, 𝛾~Γo𝑐" , 𝑑"p, 𝜆~Γ(𝑐%, 𝑑%)  where 𝑐1 , 𝑑1 , 	𝑐+ , 𝑑+ , 𝑐" , 𝑑"𝑐%, 𝑑%  are known 
hyperparameters and Γ(𝑐, 𝑑) denotes a gamma distribution with mean "	( and variance "

()
. In all the 

cases the joint prior distributionis then establish by assuming prior independence between the 
parameters, or say, 

 

 

𝜋(𝜃) = 𝜋(𝛼), 𝜋(𝛽), 𝜋(𝛾), 𝜋(𝜆)

∝ 𝛼/1#$𝛽/+#$𝜆/%#$𝛾/"#$exps−
𝛼
𝑑1

−
𝛽
𝑑+
−
𝜆
𝑑%

−
𝛾
𝑑"
t𝑝1#$(1 − 𝑝)J#$ 

(16) 

 
for models incorporating the following covariates, the prior distribution for the unknown 
parameters are assumed: 𝛼~Γ(𝑐1 , 𝑑1), 𝛽~Γo𝑐+ , 𝑑+p, 𝛾~Γo𝑐" , 𝑑"p, 𝜆~Γ(𝑐%, 𝑑%) , 𝜻𝒋~𝑁(𝑐L* , 𝑑L*

6 ) , 𝑗 =
0,1, … , 𝐽,  and 𝜂M~	𝑁o𝑐L+ , 𝑑L+

6 p, 𝑘 = 0,1, … . , 𝐾. where 𝑁(𝑐, 𝑑6) denotes a normal distribution with mean 
c and variance 𝑑6: are hyper parameters. In this situation we should focus on the independence 
between the prior distributions in a similar approach by (Martinez et al., 2013). 
 
Log Pseudo Maximum Likelihood 

Log Psuedo Marginal Likelihood (LPML) and the Pseudo Factor is an efficient tool for 
comparison of mixture and non-mixture models based on varied distributional assumption. The 
derivation of LPML 𝑫,𝑫[𝒊]	is done through conditional predictive ordinate (CPO) statistics (Gelfand 
et al., 1992). That is, for the ith observation, 𝑪𝑷𝑶𝒊 is given by 
 

 𝑓(𝐷A/𝑦|A|𝑡) = �𝑓(𝐷A/Θ)𝑓(𝑓(Θ/𝐷A)𝑑Θ (17) 
 
Where	Θ is the incomplete vector of parameters, 𝐷𝑖 is each instance of the full data is 𝐷 without the 
current observation i 

And 𝑓(Θ/𝐷A)  is the posterior density of given 𝐷[𝑖]; 	𝑖	 = 	1,2, … , 𝑛: An MCMC approximation of 
CPOi is given by: 

 

 𝐶𝑃𝑂P� = �
1
𝐵�

1
𝑓(𝐷A/Θ(J))

J

JD$

�

#$

, 𝑖 = 1,2, … , 𝑛 (18) 

 
such that, B is the iteration count for the MCMC implementation procedure after burn-in  period 
and Θ(J) is vector of the obtained samples at 4th and 5th iterations (Tsodikov et al., 2003). Thus, for 
a given model, the LPML value is given by: 
 

 𝐿𝑃𝑀𝐿� =�log(𝐶𝑃𝑂P)�
C

AD$

, 𝑖 = 1,2, … , 𝑛 (19) 

 
The larger the value of LPML, the better is fit of the model (Gelfand et al., 1992). Alternatively, 

the Pseudo Bayes factor (PMF) for comparing models m and m’ is: 
 𝑃𝐵𝐹QQE = exp	(𝐿𝑃𝑀𝐿� Q − 𝐿𝑃𝑀𝐿� Q,) (20) 
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So also, the highest probability density (HPD) intervals  was obtained for parameters of interest 
(Gelfand et al., 1992). A 100(1 − 𝜔)% HPD interval for a generic parameter 𝜃  is a subset of the  
parameter space 𝐶Θ given by 𝐶 = {𝜃; 𝜋(𝜃/𝐷) ≥ 𝑘}	where 𝜋(𝜃/𝐷) is the posterior distribution for 𝜃 
given the data 𝐷  and k is the largest number such that	

� 𝜋(𝜃/𝐷)
R(S/U)VM

= 1 − 𝜔 

   
 

German Breast Cancer Study 
In this study, we first consider the case where the cure fraction parameter and covariates are not 

included in the model. for this reason, we use the data set from German Breast Cancer (GBC) study. 
The data set comprises 686 patients under 65 years of age where 299 had an event recurrence-free 
survival and 171 died. We used the time to death as the event of interest. The maximum follow-up 
time available was 7 years. already published should be indicated by a reference: only relevant 
modifications should be described. Do not repeat the details of established methods.  

 
Bone Marrow transplant patients 

We also presented a data set of 137 bone marrow transplant patients with acute myeloctic 
leukemia (AML) and acute lymphoblastic leukemia where treated in four North American hospitals. 
Bone marrow transplants are the standard treatment for acute leukemia. Conclusions.  

 
Result and Discussion 

 
A sample 30,000 was generated for each parameter of interest based on each cases under 

consideration. Assuming a burn-in sample of 10,000 data size which can minimize the initialization 
effect on the simulation process. However, a 15,000 sample size, with each of the 200th sample 
having approximately uncorrelated values was utilized to achieve a posterior summaries of interest. 
 
Table 1. The posterior summaries of the model parameters excluding a cure fraction while 
considering GBC study dataset. 
Model Parameter Posterior 

median 
95% 𝐻𝐷𝑃!  𝐿𝑃𝑀𝐿" 𝐻𝑊# p 

value 
Geweke’s p 

value 

BW 
𝛼 3.8116   (1.5334,6.7999) -864.148  0.314  0.112 
𝛽 0.0806  (0.0166,0.2681)  0.392  0.251 
𝛾 0.9084  (0.5611,1.2922)  0.618  0.307 
𝜆 2.3126  (1.1376,4.3364)  0.099  0.223 

EW 
𝛼 7.4618  (4.5975,11.2487)  -835.774  0.232  0.076 
𝛾 0.4409  (0.3456,0.5518)  0.324  0.234 
𝜆 4.0185  (1.4213,7.6297)  0.122  0.166 

BE 
𝛼 3.3499  (1,9664,5.2017)  -844.909  0.463  0.334 
𝛽 0.0590  (0.0250,0.1167)  0.818  0.772 
𝜆 2.2978  (1.2235,4.1378)  0.699  0.394 

Weibull 𝛾 1.654  (1.4712,1.8571)  -825.444  0.736  0.757 
𝜆 3.850  (2.788,3.293)  0.710  0.842 

  
From Table 1, we observed that the convergence of the MCMC algorithm was not obtained 

choosing values less than 1 for these hyper parameters, even when using a very large burn-in -period 
for the algorithm. These results were shown in Table 1, considering the beta-Weibull (BW), 
exponentiated Weibull (EW), beta-Exponentiated (BE) and Weibull distributions respectively. 
Estimated parameters were obtained as median estimate of Gibbs samples drawn as a join posterior 
distribution. Median is preferred here over mean due to skewed nature of the distribution in the 
simulation process.. The p values from Heidelberger and Welch (HW) convergence diagnostic 
criteria do not reject the null hypothesis of stationary of the chains, for being larger or equal than 
0.10.  In the case of Geweke's p value which also suggest convergence. The result further suggest 
that, among the models in consideration, Weibull distribution has the lowest Log pseudo marginal 
likelihood (LPML) value unlike BW, BE and EW distributions all having similar LPML value.. 
However, an additional evidence of a better fit is the non convergence of the MCMC estimation on 
fitting BW distribution in presence of cure fraction as against standard Weibull distribution 
(Sauerbrei et al., 1999). 

 



SigmaMu: Journal of Mathematics, Statictics and Data Science March 2023, Volume 1, Issue 1, 1-8 
 

6 

 
Figure1 : The panel (a), plots of the survival functions estimated by Kaplan - Meier method and from the 

models based on the BW and Wiebull distributions  
 
Where (ALL) stands for ”Acute Lymphoblastic Leukemia”. While Panel (b), shows the hazard 
functions based on the Bone-Marrow Transplant data, where (AML) low risk and (AML) high risk 
stands for ”Acute Myelocticm Leukemia”. 

The inferences for the non-mixture and mixture model which are based on the Beta-Weibull 
distribution with its special cases are clearly demonstrated in Table 2.   Based on highest LPML of 
the models, mixture models get a better fit (Klein	&	Moschberger	KM,	 2003). Furthermore, the 95% 
credible interval for 𝜂6 based on its non zero value inclusion suggest that the subjects in the AML 
high risk and low risk groups have contrasting cure fractions. The Bayesian estimates for the cure 
fractions for every risk group can be obtain by considering the simulated samples for n0,n1 and n2 
and the relation 𝑃(𝐴𝑀𝐿	𝑙𝑜𝑤𝑟𝑖𝑠𝑘) = 𝑒𝑥𝑝(𝜂!),  𝑃(𝐴𝑀𝐿	ℎ𝑖𝑔ℎ𝑟𝑖𝑠𝑘) = 𝑒𝑥𝑝(𝜂! + 𝜂$)  and 𝑃(𝑎𝑙𝑙) =
𝑒𝑥𝑝(𝜂! + 𝜂6). Therefore, the estimated results obtained for the cure fractions of the patients classified 
as AML low risk, ALL and AML high risk are shown above respectively. The graphs in Figure 2, 
shows that Kaplan - Meier survival curves for bone marrow transplant patients based on the BW 
distribution fit the mixture model at all level of risks. Note that the  curves obtained from the model 
are close to those estimated by Kaplan -Meier method, a great indication of good fit based on the 
models for the (Klein	&	Moschberger	KM,	2003). 
 
Table 2. The posterior summaries assuming the mixture model with covariate and considering the 
data set of 137 bone marrow transplant patients 
Model Parameter Posterior median 95% 𝐻𝐷𝑃! 𝐿𝑃𝑀𝐿" 𝐻𝑊# p value Geweke’s p value 

BW 

𝛼 1.0129 (0.3684,2.1799) 

-67.403 

0.453 0.729 
𝛽 1.2932 (0.1107,3.2681) 0.224 0.251 
𝛾 1.0381 (0.5337,1.6854) 0.338 0.607 
𝜁$ -0.3526 (-1.1376,0.3364) 0.069 0.533 
𝜁% -0.6706 (-0.0166,0.2681) 0.152 0.651 
𝜁& -0.9889 (-0.5611,-.2922) 0.148 0.307 
𝜂$ -0.1337 (-1.1376,0.3364) 0.799 0.343 
𝜂% -0.4843 (-0.2611,0.2922) 0.618 0.707 
𝜂& -0.9124 (-1.1376, 0.3364) 0.779 0.243 

EW 

𝛼 0.9930 (4.5975,11.2487) 

-67.374 

0.232 0.076 
𝛾 1.0456 (0.5611,1.2922) 0.618 0.307 
𝜁$ -0.5640 (1.1376,0.3364) 0.099 0.223 
𝜁% -0.6876 (0.0166,0.2681) 0.372 0.351 
𝜁& -1.0025 (0.5611,1.2922) 0.618 0.307 
𝜂$ -0.1466 (-1.1376,1.3364) 0.099 0.256 
𝜂% -0.4688 (-0.0350,1.1427) 0.834 0.435 
𝜂& -0.9530 (0.0150,0.2147) 0.568 0.872 

BE 𝛼 1.0649 (1,9664,5.2017) -66.561 0.483 0.007 
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Model Parameter Posterior median 95% 𝐻𝐷𝑃! 𝐿𝑃𝑀𝐿" 𝐻𝑊# p value Geweke’s p value 
𝛽 1.2006 (0.0166,0.2681) 0.392 0.251 
𝜁$ -0.4126 (-1.1376,0.3364) 0.099 0.223 
𝜁% -0.6561 (-.0166,0.2681) 0.692 0.281 
𝜁& -0.9876 (-1.5611,1.2922) 0.618 0.307 
𝜂$ -0.1365 (-0.1376,1.9864) 0.099 0.223 
𝜂% -0.4753 (-.5611,1.2922) 0.618 0.337 
𝜂& -0.9146 (-1.1376,0.2324) 0.099 0.223 

Weibull
  

𝛾 1.654 (1.4712,1.8571) 

-65.557 

0.10 0.265 
𝜁$ -0.3126 (-1.1376,4.3364) 0.023 0.123 
𝜁% -0.0806 (-1.0166,-0.2881) 0.362 0.281 
𝜁& -1.9084 (-1.5611,-0.4922) 0.618 0.237 
𝜂$ -0.3126 (-0.1376,0.3364) 0.099 0.243 
𝜂% -0.9084 (-1.4621,0.2322) 0.228 0.417 
𝜂& -0.3126 (-1.2346,-0.5364) 0.565 0.287 

 

 
Figure 2:A Kaplan-Meier estimates for survival function ploted against respective values generated from the 

parametric mixture models for each of the distribution of interest: (a) BW (b) Weibull, (c) EW, (d) BE. 
 
Conclusion  

 
The cure fraction model and covariates analysis are strong features of a life time data analysis. 

Deployment of different parametric formulations for the analysis of such data can be done as mixture 
or non mixture models. This paper establish a parametric models approach based on BW distribution 
with special cases useful in analyzing medical data set (Wahed et al., 2009). Also the Bayesian 
methodology using MCMC methods was demonstrated in this work as a suitable tool to establish 
certain inferences about parameters of the model. As highlighted by (Carrasco et al., 2008), the 
limitation of the BW distribution is that the survival function has no closed form of expression and 
thus numerical integration techniques were utilize for parameter estimate of the model. Same 
limitations were more critical in terms of covariates because the likelihood function become more 
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complex. An advantage of Bayesian approach over other conventional method is it explicit 
incorporation of an expert prior opinion for the parameters. In clinical application, the knowledge 
of a specialist of the expected proportion of patience who are immune to the event of interest can be 
added into a prior distribution for the cure fraction p to have a more precise inference  
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