Characterization of Photocurable Functionalized-CNT Nanocoating to Mitigate the Naturally Emission of Radon Gas
DOI:
10.56566/jmsr.v1i3.480Downloads
Abstract
This study focuses on the synthesis and characterization of an anti-radon photocurable nanocoating formulated using a UV-curable formulation incorporated with functionalized carbon nanotubes (F-CNTs). The coating was prepared using Ebecryl 600 (urethane acrylate oligomer) and TMPTA (monomer), with GPTMS as a coupling agent and various photoinitiator combinations. Different F-CNT loadings ranging from 0.1 to 0.9 wt% were studied to evaluate their effects on coating performance. The samples were cured under UV irradiation for 2–20 passes to investigate the influence of exposure time on polymer crosslinking. Characterization analyses including pendulum hardness, Fourier-transform infrared spectroscopy (FTIR), viscosity, gel content, and radon gas permeability were performed. Results indicated that the incorporation of F-CNTs enhanced the mechanical strength and crosslinking density of the coating. The optimal formulation exhibited a hardness of 150.33 s (BAPO + 8 passes) and a gel content of 97%. Furthermore, radon concentration measurements showed a 28.9% reduction after applying a single coating layer, confirming the coating’s potential as an effective barrier for radon gas mitigation.
Keywords:
Anti-radon coating Functionalized carbon nanotubes Photocurable nanocoating UV-curable polymerReferences
Ahmad, N., Khan, I. U., Rehman, J., & Nasir, T. (2017). An overview of radon concentration in Malaysia. Journal of Radiation Research And Applied Sciences, 10(4), 327-330. https://doi.org/10.1016/j.jrras.2017.08.001 DOI: https://doi.org/10.1016/j.jrras.2017.08.001
Alias, M. S., Othman, N. K., Kamarudin, S. R. M., Harun, M. H., Mohamed, M., Saidin, N. U., Mohamad, S. F. & Samsu, Z. (2022). Influence of graphite particles in UV-curable corrosion protection coating from palm oil based urethane acrylate (POBUA). Industrial Crops and Products, 187, 115436. https://doi.org/10.1016/j.indcrop.2022.115436 DOI: https://doi.org/10.1016/j.indcrop.2022.115436
Alias, M. S., Zulkafli, R., Othman, N. K., Jamil, M. S. M., Kamarudin, S. R. M., Mohamad, S. F., Harun, M. H. & Mohamed, M. (2025). Improving Corrosion Protection of Urethane Acrylate UV Curable Coatings Derived from Palm Oil via Graphene Oxide Particle Incorporation. Sains Malaysiana, 54(2), 589-599. DOI: https://doi.org/10.17576/jsm-2025-5402-23
Barnes, H. A. (2001). An examination of the use of rotational viscometers for the quality control of non-Newtonian liquid products in factories. Applied Rheology, 11(2), 70-101. https://doi:10.1515/arh-2001-0006 DOI: https://doi.org/10.1515/arh-2001-0006
Bezek, L. B., & Williams, C. B. (2023). Process-structure-property effects of ultraviolet curing in multi-material jetting additive manufacturing. Additive Manufacturing, 73, 103640. https://doi.org/10.1016/j.addma.2023.103640 DOI: https://doi.org/10.1016/j.addma.2023.103640
Cofone, L., Sabato, M., Colombo, C., Scalingi, S., Montesi, A., Paglione, L., & Patania, F. (2025). Health Effects and Preventive Strategies for Radon Exposure: A Systematic Review of the Literature. Journal of Respiration, 5(4), 16. https://doi.org/10.3390/jor5040016 DOI: https://doi.org/10.3390/jor5040016
Crivello, J. V., & Bulut, U. (2005). Radiation curable coatings and inks containing nanomaterials. Progress in Organic Coatings, 52(2), 109–120. https://doi.org/10.1016/j.porgcoat.2004.11.001 DOI: https://doi.org/10.1016/j.porgcoat.2004.11.001
Cunningham, A. F., Desobry, V., Dietliker, K., Hüsler, R., & Leppard, D. G. (1994). Recent developments in radical photoinitiator chemistry. Chimia, 48(9), 423-423. DOI: https://doi.org/10.2533/chimia.1994.423
Decker, C. (2002). Kinetic study and new applications of UV radiation curing. Macromolecular Rapid Communications, 23(18), 1067–1093. https://doi.org/10.1002/marc.200290012 DOI: https://doi.org/10.1002/marc.200290014
Diekmann, A., Omelan, M. C., & Giese, U. (2021). Influence of carbon nanotube-pretreatment on the properties of polydimethylsiloxane/carbon nanotube-nanocomposites. Polymers, 13(9), 1355. https://doi.org/10.3390/polym13091355 DOI: https://doi.org/10.3390/polym13091355
Dose, M. (2016). Reducing Radon Gas Emission in Concrete (Phd. thesis). KTH Royal Institute of Technology, Stockholm, Sweden.
Harun, M. H., Salleh, N. G. N., Alias, M. S., Mohamed, M., Abdul Rahman, M. F., Hamzah, M. Y. & Othman, N. (2018). Removal of Oxidative Debris from Chemically Functionalized Multi-walled Carbon Nanotube (MWCNT). International Journal of Nanoelectronics & Materials, 11(1). https://ijneam.unimap.edu.my/images/PDF/IJNEAM%20No.%201%202018%20JAN/Vol_11_No_1_2018_5_43-48.pdf
Harun, M. H. (2017). Carbon Nanotubes and Radiation Applications in its Synthesis. Chapter 7. Ionizing Radiation Processing Technology (pp. 153-169), Malaysian Nuclear Agency.
Hossain, M. M., Chowdhury, H. I., Siddiqui, M. S., Hossain, M. S., & Rabbi, M. S. (2025). Recent Advances in Coated Carbon Nanotube-Reinforced Metal Matrix Composites: Challenges, Techniques, and Performance Enhancement. Carbon Trends, 100568, 1-36. https://doi.org/10.1016/j.cartre.2025.100568 DOI: https://doi.org/10.1016/j.cartre.2025.100568
Hsissou, R., Bekhta, A., Dagdag, O., El Bachiri, A., Rafik, M., & Elharfi, A. (2020). Rheological properties of composite polymers and hybrid nanocomposites. Heliyon, 6(6)
https://doi:10.1016/j.heliyon.2020.e04187 DOI: https://doi.org/10.1016/j.heliyon.2020.e04187
Huang, P., Lv, W., Huang, R., Feng, Y., Luo, Q., Yin, C., & Yang, Y. (2024). Impact of environmental factors on atmospheric radon variations at China Jinping Underground Laboratory. Scientific Reports, 14(1), 31402. https://doi:10.1038/s41598-024-82936-0 DOI: https://doi.org/10.1038/s41598-024-82936-0
Jena, K. K., & Raju, K. S. N. (2008). Synthesis and characterization of hyperbranched polyurethane hybrids using tetraethoxysilane (TEOS) as cross-linker. Industrial & Engineering Chemistry Research, 47(23), 9214-9224. https://0.1021/ie800884y DOI: https://doi.org/10.1021/ie800884y
Kang, J. K., Seo, S., & Jin, Y. W. (2019). Health effects of radon exposure. Yonsei Medical Journal, 60(7), 597-603. https://doi.org/10.3349/ymj.2019.60.7.597 DOI: https://doi.org/10.3349/ymj.2019.60.7.597
Kashkinbayev, Y., Kazhiyakhmetova, B., Altaeva, N., Bakhtin, M., Tarlykov, P., Saifulina, E., Aumalikova, M., Ibrayeva, D., & Bolatov, A. (2025). Radon Exposure and Cancer Risk: Assessing Genetic and Protein Markers in Affected Populations. Biology, 14(5), 506. https://doi.org/10.3390/biology14050506 DOI: https://doi.org/10.3390/biology14050506
Kellenbenz, K. R., & Shakya, K. M. (2021). Spatial and temporal variations in indoor radon concentrations in Pennsylvania, USA from 1988 to 2018. Journal of Environmental Radioactivity, 233, 106594. https://doi.org/10.1016/j.jenvrad.2021.106594 DOI: https://doi.org/10.1016/j.jenvrad.2021.106594
Khoswan, I., Abusafa, A., & Odeh, S. (2024). The effect of carbon nanotubes on the viscosity and surface tension of heat transfer fluids—A review paper. Energies, 17(22), 5584. https://doi.org/10.3390/en17225584 DOI: https://doi.org/10.3390/en17225584
Kim, S. H., Lee, K. H., Kim, D. H., Kim, M. J., Jung, K. S., & Cho, S. Y. (2012). Radon mitigation efficiency using nano-size carbon colloid. Technical Proceedings of the 2012 NSTI Nanotechnology Conference and Expo, NANOTech 2012 Volumes 1, 433-436.
Kotsilkova, R., & Tabakova, S. (2023). Exploring effects of graphene and carbon nanotubes on rheology and flow instability for designing printable polymer nanocomposites. Nanomaterials, 13(5), 835. https://doi.org/10.3390/nano13050835 DOI: https://doi.org/10.3390/nano13050835
Li, H., Li, Z., Qiu, L., Dong, S., Ouyang, J., Dong, X., & Han, B. (2023). Rheological behaviors and viscosity prediction model of cementitious composites with various carbon nanotubes. Construction and Building Materials, 379, 131214. https://doi.org/10.1016/j.conbuildmat.2023.131214 DOI: https://doi.org/10.1016/j.conbuildmat.2023.131214
Liu, Y., Fu, C., Li, Y., Xu, W., Huang, Z., & Xu, Y. (2025). Uncovering hidden dangers in urban housing: Sources of indoor radon and associated health risks. Journal of Environmental Management, 387, 125899. https://doi.org/10.1016/j.jenvman.2025.125899 DOI: https://doi.org/10.1016/j.jenvman.2025.125899
Mphaga, K. V., Mbonane, T. P., Utembe, W., & Rathebe, P. C. (2024). Short-Term vs. Long-Term: A Critical Review of Indoor Radon Measurement Techniques. Sensors, 24(14), 4575. https://doi.org/10.3390/s24144575 DOI: https://doi.org/10.3390/s24144575
Park, S., & Kim, H. (2021). Enhanced barrier properties of polymer nanocomposite coatings using functionalized carbon nanotubes. Journal of Applied Polymer Science, 138(5), 49621. https://doi.org/10.1002/app.49621 DOI: https://doi.org/10.1002/app.49621
Rashid, A. B., Haque, M., Islam, S. M., & Labib, K. R. U. (2024). Nanotechnology-enhanced fiber-reinforced polymer composites: Recent advancements on processing techniques and applications. Heliyon, 10(2), 1-29. https://doi.org/10.1016/j.heliyon.2024.e24692 DOI: https://doi.org/10.1016/j.heliyon.2024.e24692
Ruvira, B., García-Fayos, B., Juste, B., Arnal, J. M., & Verdú, G. (2022). Experimental estimation of the diffusion coefficient in radon barrier materials based on ISO/TS 11665-13: 2017. Radiation Physics and Chemistry, 193, 109993. https://doi.org/10.1016/j.radphyschem.2022.109993 DOI: https://doi.org/10.1016/j.radphyschem.2022.109993
U.S. Environmental Protection Agency (EPA). (2024). A Citizen’s Guide to Radon: The Guide to Protecting Yourself and Your Family from Radon. EPA 402/K-23/002. https://www.epa.gov/sites/default/files/2016-12/documents/2016_a_citizens_guide_to_radon.pdf
Veselska, O., Vaidya, S., Llido, O., Macko, M., Deroche, I., Bourrelly, S., & Busto, J. (2025). Exploring the science of radon adsorption: Materials, methodologies, and emerging directions. Separation and Purification Technology, 134640. https://doi.org/10.1016/j.seppur.2025.134640 DOI: https://doi.org/10.1016/j.seppur.2025.134640
World Health Organization (WHO). (2023). Radon and Health: Key Facts. Retrieved from https://www.who.int/news-room/fact-sheets/detail/radon-and-health
License
Copyright (c) 2025 Aisha Dalila Ab Aziz, Mohd Hamzah Harun, Izzuddin Mohamad Zaharuddin, Nor Adnin Ezani Mohd Ezani, Norfazlinayati Othman, Mahathir Mohamed, Mohd Sofian Alias, Mohd Faizal Abd Rahman, Khairil Nor Kamal Umar, Nurul Huda Mudri, Khairul Azhar Abdul Halim, Mohamad Syahiran Mustafa, Lakam Mejus, Faizal Azrin Abdul Razalim, Rosley Che Ismail, Abdul Muiz Mohd Sani, Sharilla Mohd Faisal, Rida Tajau

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Journal of Material Science and Radiation, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Journal of Material Science and Radiation.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).


