Synthesis and Characteristics of Nickel Doped Barium M-Hexaferrite (BaFe12O19) by Coprecipitation Method

Authors

Susilawati , Aris Doyan , Munib

Published:

2025-04-27

Issue:

Vol. 1 No. 1 (2025): April

Keywords:

Barium M-hexaferrite, Coprecipation method, Dopant ion, Nickel

Articles

Downloads

How to Cite

Susilawati, S., Doyan, A., & Munib, M. (2025). Synthesis and Characteristics of Nickel Doped Barium M-Hexaferrite (BaFe12O19) by Coprecipitation Method. Journal of Material Science and Radiation, 1(1), 29–35. Retrieved from https://journals.balaipublikasi.id/index.php/jmsr/article/view/364

Abstract

Barium M-hexaferrite (BaFe12O19) as an absorber of microwaves has been synthesized by coprecipitation method and its effect on changes in temperature and dopant substitution. Basic materials used in the synthesis of BaCO3, FeCl3.6H2O and nickel metal. This study used a variation of calcination temperature of 80 ° C, 400 ° C, 600 ° C and 800 ° C for 4 hours with a variety of dopants 0; 0.4; 0.7 and 0.9. The results indicate that the formation of single phase and uniform distribution on M-barium hexaferrite (BaFe12-xNixO19) at 800 ° C calcination temperature and variations in dopant x = 0.7. The elements of barium is spread very evenly matched with the concentration of each element in the compound BaFe12-xNixO19. The addition of the dopant concentration can increase the value of conductivity that is in the range of 10-6 to 10-4 with a coercivity value at x = 0.7 and calcination temperature of 800 ° C at 0.05 T and magnetization value of 2.25 emu /g

 

References

Agustianto, R., & Widyastuti, W. (2014). Fraksi Mol Dan Variasi Ph Terhadap Sifat Magnetik Dan Struktur Mikro Barium Heksaferrit Dengan Metode Sol-Gel Auto Combustion. Jurnal Teknik ITS. https://doi.org/10.12962/j23373539.v3i1.5861

Bartolomé, J., Arauzo, A., Kazak, N. V, Ivanova, N. B., Ovchinnikov, S. G., Knyazev, Y. V, & Lyubutin, I. S. (2011). Uniaxial magnetic anisotropy in Co 2. 25 Fe 0. 75 O 2 BO 3 compared to Co 3 O 2 BO 3 and Fe 3 O 2 BO ludwigites. Physical Review B—Condensed Matter and Materials Physics, 83(14), 144426. https://doi.org/10.1103/PhysRevB.83.144426

Dhiman, P., Jasrotia, R., Goyal, D., & Mola, G. T. (2021). Hexagonal ferrites, synthesis, properties and their applications. Mater. Res. Found, 112, 336. https://doi.org/10.21741/9781644901595-10

Godara, S. K., Kaur, V., Jasrotia, R., Thakur, S., Singh, V. P., Ahmed, J., Alshehri, S. M., Pandit, B., Singh, M., Kaur, P., & others. (2022). Effect of Ca2+ exchange at Ba2+ site on the structural, dielectric, morphological and magnetic traits of BaM nanohexaferrites. Journal of Magnetism and Magnetic Materials, 564, 170049. https://doi.org/10.1016/j.jmmm.2022.170049

Hossain, M., Qin, B., Li, B., & Duan, X. (2022). Synthesis, characterization, properties and applications of two-dimensional magnetic materials. Nano Today, 42, 101338. https://doi.org/10.1016/j.nantod.2021.101338

Kubisiak, P., Narkevičius, D., Nicotri, C., & Eilmes, A. (2025). Comparative study of isomeric TFSI and FPFSI anions in Li-ion electrolytes using quantum chemistry and Ab initio molecular dynamics. The Journal of Physical Chemistry B, 129(9), 2560–2572. https://doi.org/10.1021/acs.jpcb.4c08414

Mulyawan, A., Winatapura, D. S., Sarwanto, Y., & Adi, W. A. (2021). Effects of La-Co substitution on the microstructure and magnetic properties of M-type barium ferrite. AIP Conference Proceedings, 2381(1). https://doi.org/10.1063/5.0066280

Munib, Susilawati, & Savalas, L. R. T. (2016). Sintesis Barium M-hexaferritte (BaFe12-xNixO19) Doping Logam Nikel dengan Metode Kopresipitasi. Jurnal Penelitian Pendidikan IPA, 2(1). https://doi.org/10.29303/jppipa.v2i1.28

Oliveira, T. G., Guerra, Y., Araujo-Barbosa, S., Gusmão, S. B. S., Lobo, A. O., Silva-Filho, E. C., Santos, F. E. P., Peña-Garcia, R., & Viana, B. C. (2023). Titanate nanotubes and their magnetic properties: Effect of ion exchange and calcination temperature. Journal of Materials Research, 38(5), 1332–1348. https://doi.org/10.1557/s43578-023-00893-2

Peng, K., Zhou, Z., Wang, H., Wu, H., Ying, J., Han, G., Lu, X., Wang, G., Zhou, X., & Chen, X. (2021). Exceptional performance driven by planar honeycomb structure in a new high temperature thermoelectric material BaAgAs. Advanced Functional Materials, 31(24), 2100583. https://doi.org/10.1002/adfm.202100583

Rajenimbalkar, R. S., Deshmukh, V. J., Patankar, K. K., & Somvanshi, S. B. (2024). Effect of multivalent ion doping on magnetic, electrical, and dielectric properties of nickel ferrite nanoparticles. Scientific Reports, 14(1), 29547. Retrieved from https://www.nature.com/articles/s41598-024-81222-3

Ramlan, R., & Puspita, E. (2023). Effect of The Composition of TiO2 Additives on The Physical and Magnetic Properties Crystal Structure and Microstructure of BaFe12O19 Magnetic Ceramics. Indonesian Journal of Applied Physics, 13(2), 207–214. https://doi.org/10.13057/ijap.v13i2.5

Sangwong, N., Suwan, M., & Supothina, S. (2019). Effect of calcination temperature and dolomite or Al2O3 doping on properties of NIR--reflective CoFe2O4 black pigment. Materials Today: Proceedings, 17, 1595–1601. https://doi.org/10.1016/j.matpr.2019.06.187

Sholihah, F. R., & Zainuri, M. (2012). Pengaruh Holding Time Kalsinasi Terhadap Sifat Kemagnetan Barium M-Hexaferrite (BaFe12-xZnxO19) dengan Ion Doping Zn. Jurnal Sains Dan Seni ITS, 1(1), 15789. Retrieved from https://www.neliti.com/publications/15789/pengaruh-holding-time-kalsinasi-terhadap-sifat-kemagnetan-barium-m-hexaferrite-b

Silvia, L., Rosyidah, K. C., & Zainuri, M. (2013). Pengaruh Ion Doping Zn pada Sifat Kemagnetan Barium M-Heksaferit BaFe12- xZnxO19 berbasis Pasir Besi Tulungagung. Jurnal Fisika Dan Aplikasinya, 9(3), 121–124. https://doi.org/10.12962/j24604682.v9i3.853

Solizoda, I. A., Zhivulin, V. E., Gudkova, S. A., Taskaev, S. V, Zabeivorota, N. S., Pesin, L. A., & Vinnik, D. A. (2024). Influence of the Substitution of Iron by Aluminum and Titanium on the Structure and Properties of Barium Hexaferrite. Journal of Structural Chemistry, 65(6), 1210–1218. https://doi.org/10.1134/S002247662406009X

Susilawati, Doyan, A., Al-Qoyyim, T. M., Maemum, P. J., Ristanti, C. I., & Ariani, B. I. (2023). Synthesis of Barium M-Hexaferrite Using Co-precipitation Method with Zn Doping Based on Natural Iron Sand at Tebing Beach, North Lombok as Microwave Absorbent Material. Jurnal Penelitian Pendidikan IPA, 9(1), 498–503. https://doi.org/10.29303/jppipa.v9i1.2935

Susilawati, S., Munib, M., & Doyan, A. (2015). Pengaruh Temperatur Kalsinasi Dan Subsitusi Logam Nikel Pada Pembentukan Fasa Barium M-Hexaferritte (BaFe12-xNixO19) Menggunakan FTIR. Jurnal Pijar Mipa, 10(1). https://doi.org/10.29303/jpm.v10i1.14

Syamsir, A. (2012). Sintesis Nanokomposit PAni/TiO2/Karbon Sebagai Penyerap Gelombang Mikro. Jurnal Fisika Unand, 1(1). Retrieved from https://jfu.fmipa.unand.ac.id/index.php/jfu/article/view/9/0

Temuujin, J., Aoyama, M., Senna, M., Masuko, T., Ando, C., & Kishi, H. (2004). Synthesis of Y-type hexaferrites via a soft mechanochemical route. Journal of Solid State Chemistry, 177(11), 3903–3908. https://doi.org/10.1016/j.jssc.2004.06.051

Ting, T.-H., & Wu, K.-H. (2010). Synthesis, characterization of polyaniline/BaFe12O19 composites with microwave-absorbing properties. Journal of Magnetism and Magnetic Materials, 322(15), 2160–2166. https://doi.org/10.1016/j.jmmm.2010.02.002

Verma, A., & Jasrotia, R. (2023). An overview of hard ferrites: types and structures. Materials Research Foundations, 142. Retrieved from https://mrforum.com/product/9781644902318-1/

Wang, C., Zheng, Z., Zou, Y., & Feng, Q. (2022). Enhanced microstructure homogeneity, density and magnetic performances of the BaM hexaferrite/PDMS composite films through solvent-assisted synthesis. Ceramics International, 48(15), 22147–22152. https://doi.org/10.1016/j.ceramint.2022.04.214

Author Biographies

Susilawati, University of Mataram, Mataram

Aris Doyan, University of Mataram, Mataram

Munib, University of Mataram

License

Copyright (c) 2025 Susilawati, Aris Doyan, Munib

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Journal of Material Science and Radiation, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Journal of Material Science and Radiation.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).