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Abstract: This study focuses on the synthesis and characterization of an anti-radon
photocurable nanocoating formulated using a UV-curable formulation incorporated
with functionalized carbon nanotubes (F-CNTs). The coating was prepared using Ebecryl
600 (urethane acrylate oligomer) and TMPTA (monomer), with GPTMS as a coupling
agent and various photoinitiator combinations. Different F-CNT loadings ranging from
0.1 to 0.9 wt% were studied to evaluate their effects on coating performance. The samples
were cured under UV irradiation for 2-20 passes to investigate the influence of exposure
time on polymer crosslinking. Characterization analyses including pendulum hardness,
Fourier-transform infrared spectroscopy (FTIR), viscosity, gel content, and radon gas
permeability were performed. Results indicated that the incorporation of F-CNTs
enhanced the mechanical strength and crosslinking density of the coating. The optimal
formulation exhibited a hardness of 150.33 s (BAPO + 8 passes) and a gel content of 97 %.
Furthermore, radon concentration measurements showed a 28.9% reduction after
applying a single coating layer, confirming the coating’s potential as an effective barrier
for radon gas mitigation.
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Agency (EPA, 2024) has set the recommended action
level for indoor radon concentration at 148 Bq/m? (4

Radon (**Rn) is a naturally occurring radioactive  pCi/L), above which mitigation measures are strongly

gas generated from the decay of uranium present in soil,
rocks, and construction materials (Ahmad et al., 2017;
Veselska et al., 2025). Continuous exposure to radon
poses severe health hazards, particularly lung cancer,
due to the inhalation of its alpha-emitting progeny
(Kashkinbayev et al., 2025). According to the World
Health Organization (WHO, 2023), radon is responsible
for approximately 14% of lung cancer deaths globally,
making it the second leading cause of lung cancer after
smoking. In addition, the U.S. Environmental Protection
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advised (Cofone et al., 2025, Mphaga et al., 2024;
Kellenbenz et al., 2021). These findings highlight the
urgent need to develop effective radon mitigation
technologies for residential and industrial applications
(Kang et al., 2019; Liu et al., 2025).

Meanwhile, radiation-curable coatings, especially
those cured under ultraviolet (UV) light, have gained
significant interest for sustainable surface protection due
to their rapid polymerization, solvent-free formulation,
and excellent crosslinking properties (Alias et al., 2025).
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The integration of nanomaterials into such systems has
shown promising improvements in performance
(Crivello and Bulut, 2005). Among various
nanomaterials, functionalized carbon nanotubes (F-
CNTs) have demonstrated outstanding mechanical
strength (Harun et al., 2018), chemical stability (Harun,
2017), and ability to enhance barrier properties by
increasing the tortuosity of gas diffusion pathways
within polymer matrices (Park and Kim, 2021; Kim et al.,
2012).

In this study, an anti-radon photocurable
nanocoating was synthesized and evaluated to develop
a protective layer capable of reducing radon gas
diffusion. The coating formulation consisted of Ebecryl
600 (urethane acrylate oligomer) and
trimethylolpropane triacrylate (TMPTA) as the base
matrix, GPTMS as a coupling agent, and F-CNTs as
nanofillers. Different photoinitiator systems, TPO-L
combined with Irgacure 184, BAPO, Irgacure 500, and
TPO-L/BAPO blends were utilized to optimize curing
efficiency.

Method

The anti-radon photocurable nanocoating was
formulated using Ebecryl 600 (Allnex), a urethane
acrylate oligomer, and trimethylolpropane triacrylate
(TMPTA, Allnex) as the reactive monomer. A silane
coupling agent, 3-glycidyloxypropyltrimethoxysilane
(GPTMS, Sigma), was incorporated at 1 wt% to enhance
interfacial bonding between the polymer matrix and the
functionalized carbon nanotubes (F-CNTs). The F-CNTs
were introduced as nanofillers with varying loadings
from 0.1 to 0.9 wt% to study their effect on the
mechanical and barrier properties of the coating.
Different photoinitiator systems were prepared to
evaluate the effect of curing behavior on coating
performance. The photoinitiators used include TPO-L
(1.0 g) (BASF) combined with 0.3 g Irgacure 184 (BASF),
1.5 g BAPO (BASF), Irgacure 500 (1.5 g), and a blend of
TPO-L (0.8 g) with BAPO (0.7 g). Acetone was used as a
solvent and dispersion medium for F-CNTs prior to
blending. The formulations were mixed using a
mechanical stirrer (Heidolph RZR 2051 Control)
operating at 290 rpm for 5 minutes, followed by
ultrasonication using a Sonics Vibra-Cell processor at
50% amplitude with a 2-second pulse for 30 minutes to
ensure uniform dispersion of nanotubes. The coating
formulations were applied onto clean glass substrates
using a 50 um gap applicator rod and a paint brush for
even film distribution. Coated samples were cured
under UV irradiation using a conveyor-type UV curing
machine operating at a constant speed of 10 m/min,
with UV exposure varied between 2 and 20 passes. The
samples were then stored at room temperature before
characterization. Radon permeability was assessed

December 2025, Volume 1, Issue 3, 104-110

using a portable radon analyzer to evaluate the coating’s
ability to reduce radon gas diffusion through a concrete
culvert. Both coated and uncoated surfaces were tested
under identical conditions for 30 minutes to determine
changes in radon concentration (Dose, 2022). The
measurement setup is shown in Figure 1, where the
radon analyzer was connected to a sealed concrete
culvert coated with the synthesized formulation. The
setup was positioned in an open-air environment to
simulate realistic exposure conditions while minimizing
background interference.
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Figure 1. Experimental setup for rado

n permeability test using
a portable radon analyzer on coated and uncoated concrete
culvert samples.

Result and Discussion

The performance of the synthesized UV-curable
nanocoating was evaluated through pendulum
hardness, FTIR spectroscopy, gel content, viscosity, and
radon permeability analyses. The results demonstrate
the influence of photoinitiator type, UV exposure, and F-
CNT loading on the mechanical, chemical, and barrier
properties of the developed coatings.

Pendulum Hardness

The pendulum hardness test was conducted to
determine the surface rigidity of the cured coatings. As
shown in Figure 2, the hardness increased significantly
with optimized photoinitiator composition and UV
curing passes. The combination of BAPO photoinitiator
with 8 UV passes produced the highest hardness value
of 150.33 s, indicating superior crosslinking and
polymerization  efficiency  (Alias, 2022).  This
improvement is attributed to BAPO’s deeper UV
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absorption and  higher initiation efficiency
(Cunningham et al., 1994). Beyond the optimal number
of passes, a slight decline in hardness was observed,
likely due to overexposure and localized heat buildup
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that may lead to microstructural stress (Bezek and
William, 2023). Error bars in Figure 2 represent standard
deviations from triplicate measurements, indicating
consistent repeatability of results.

EFFECT OF UV EXPOSURE TIME AND PHOTOINITIATOR
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Figure 2. Effect of different photoinitiator systems and UV passes on the pendulum hardness of UV-cured nanocoatings.

Gel Content

The gel content analysis results, presented in Figure
3, reveal that the degree of crosslinking varied with F-
CNT loading. The maximum gel content of 97% was
recorded at 0.3 wt% F-CNT, signifying a highly
crosslinked network with minimal soluble fraction.
Lower F-CNT concentrations provided insufficient

reinforcement, whereas excessive loading (>0.5 wt%) led
to particle agglomeration, limiting UV light penetration
and reducing crosslinking efficiency (Diekmann et al.,
2021). This correlation confirms that an optimal

Effect of FCNT on Pendulum Hardness And Gel Content

nanofiller concentration enhances the polymer
network’s integrity and stability (Rashid, 2024).
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Figure 3. Effect of F-CNT loading on gel content (%) of UV-cured nanocoatings.
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FTIR Analysis

The FTIR spectra of uncured and UV-cured samples
are presented in Table 1. The disappearance of the

characteristic C=C stretching vibration near 1635 cm™
after curing indicates complete conversion of acrylate
groups (Alias et al., 2025). The appearance of Si-O-5i
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stretching peaks around 1100 cm™ confirms silane
crosslinking from GPTMS, which improves interfacial
bonding between the F-CNTs and polymer matrix (Jena
and Raju, 2008). The intensity of C=0 stretching at 1720
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cm ™! remained stable, suggesting structural integrity of
the urethane acrylate backbone after UV curing (Decker,
2002).

Table 1. FTIR spectra of UV-cured nanocoatings showing characteristic peaks before and after curing.

Wavenumber (cm™) Functional Group

Observation Correlation to Hardness

3700-3000 O-H / N-H stretching Decreased with F-CNT due to Lower peak = stronger interaction
bonding

~1720 C=0 stretching Ester/urethane linkage Sharper peak = stronger structure

~1635 C=C stretching Unreacted acrylate bonds Lower intensity = higher curing

~1100 Si-O-Si stretching GPTMS siloxane network ~ Sharper peak = better crosslinking

1500-1000 Fingerprint region CNT-polymer interaction More details = stronger bonding

Viscosity Analysis rpm), could not be detected by the viscometer and were

Viscosity measurements were conducted at
rotational speeds of 0.3, 0.5, and 1.0 rpm to evaluate the
rheological behavior of the coating formulations. The
results, as shown in Figure 5, indicate that viscosity
increased with higher F-CNT loading, reflecting
enhanced intermolecular interactions and network
formation within the UV-curable system (Li et al., 2023).
At lower loadings (0.2 wt%), the coatings maintained
uniform flow behavior suitable for application, while
excessive F-CNT content (>0.7 wt%) caused a sharp rise
in viscosity due to nanotube entanglement and reduced
dispersion homogeneity (Khoswan et al., 2024). It was
observed that some readings at higher filler
concentrations, specifically at 0.4 wt% and 0.7 wt% (1.0

recorded as “EEE” in the dataset. This anomaly is
attributed to the high viscosity and non-Newtonian
behavior of the formulations, which exceeded the
instrument’s detection range at that rotational speed
(Barnes, 2001). The observation supports the strong
influence of F-CNT incorporation on thickening and
gelation behavior in the coating matrix (Hossain et al.,
2025). Overall, the shear-dependent decrease in viscosity
with increasing rpm confirms the pseudoplastic (shear-
thinning) characteristics typical of UV-curable
nanocomposite coatings, where viscosity decreases
under shear stress due to the alignment of polymer
chains and nanofillers during rotation (Kotsilkova and
Tabakova, 2023; Hsissou et al., 2020).

Table 2. Effect of F-CNT loading on viscosity of UV-curable nanocoating at different rotational speeds.

F-CNT Content (wt%) Viscosity (cP) at 0.3 rpm

Viscosity (cP) at 0.5 rpm Viscosity (cP) at 1.0 rpm

0.0 4245
0.1 3435
0.2 6059
0.3 5376
0.4 8917
0.5 7701
0.7 13890
0.9 10990

3827 3808
3418 3283
5939 6003
5478 4685
8141 Undetectable
5734 4474
10560 Undetectable
6848 4941

Radon Permeability Test

The radon permeability performance reading
shows that the average radon concentration for the
uncoated concrete sample was 28.77 Bq/m?, while the
coated surface recorded a significantly lower
concentration of 20.46 Bq/m? after a 30-minute exposure
period. This corresponds to an approximate 28.9%
reduction in radon transmission, validating the coating’s
effectiveness as a diffusion barrier (Ruvira et al., 2022).
The reduction is attributed to the dense polymeric film

formed after curing, which sealed micro-pores and
restricced gas pathways. Furthermore, F-CNT
reinforcement increased the tortuosity of radon
diffusion, forcing gas molecules to take longer, more
complex paths through the material (Kim et al., 2012).
Minor variations in readings were observed due to
environmental changes such as humidity and
temperature (Huang et al., 2024); however, the overall
downward trend confirms consistent radon-blocking
behavior.

Table 3. Comparison of radon concentration between uncoated and coated concrete samples

Reading Uncoated Surface 1-Layer Coated Surface Error
Radon Concentration Error Radon Concentration

1 209 11.68 15.86 10.57

2 209 11.76 18.39 10.31

3 44.52 5.94 27.15 3.91

Average 28.77 6.46 20.46 8.26

107



Journal of Material Science and Radiation
Conclusion

The synthesis and characterization of the UV-
curable anti-radon photocurable nanocoating were
successfully carried out using Ebecryl 600, TMPTA, and
functionalized carbon nanotubes (F-CNTs) as key
formulation components. The combination of optimized
photoinitiators and UV exposure parameters produced
a uniform, highly crosslinked film with superior surface
hardness and structural integrity. Among all systems,
the formulation containing BAPO photoinitiator cured
at 8 passes demonstrated the highest pendulum
hardness (150.33 s), indicating optimal polymerization
and mechanical stability. The FTIR analysis confirmed
successful chemical bonding and complete acrylate
conversion, while gel content measurements revealed a
maximum of 97% crosslinking at 0.3 wt% F-CNT
loading. Viscosity results showed that increasing F-CNT
concentration enhanced intermolecular interactions,
though excessive loading caused aggregation and non-
uniform flow behavior. The radon permeability test
demonstrated a clear improvement in barrier
performance, with the coated concrete showing a 28.9%
reduction in radon concentration compared to the
uncoated surface, confirming its effectiveness as a
partial diffusion barrier. In conclusion, the developed
photocurable nanocoating exhibits excellent mechanical
strength, high curing efficiency, and promising potential
for environmental protection and radiation safety
applications. The incorporation of F-CNTs not only
reinforced the polymer structure but also enhanced the
coating’s ability to restrict radon gas transmission. For
future work, further improvement may be achieved by
optimizing nanofiller dispersion techniques, increasing
coating layer thickness, or extending UV curing
conditions to achieve complete surface sealing.
Additionally, long-term stability and multi-layer coating
studies are recommended to evaluate durability under
various environmental conditions.
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