Design and Techno-Economic Evaluation of a Solar Photovoltaic Groundwater Pumping System for Irrigation and Rural Water Supply in Punjab, India

Muhammad Zurhalki (1), Najib Hassan (2), Andika Prasetiadi (3), Xinhui Wang (4), Joydip Saha (5), Nanang Dwi Wahyono (6)
(1) Australian National University, Australia,
(2) Utrecht University, Netherlands,
(3) Australian National University, Australia,
(4) Australian National University, Australia,
(5) Australian National University, Australia,
(6) Politeknik Negeri Jember, Indonesia

Abstract

Diesel-powered groundwater pumping remains common in Indian agriculture, contributing to high fuel use, costs, and greenhouse gas emissions. With rising irrigation demand and groundwater stress, an accelerated transition to low-emission irrigation technologies is increasingly urgent. This study assesses the technical and economic feasibility of replacing diesel-powered pumping with a solar photovoltaic (PV) system in Punjab, India. A 10 kWp PV system was found to reliably meet irrigation demand for one hectare of paddy cultivation and typical domestic water needs under seasonal variability. Life Cycle Cost and Break-Even analyses over a 15-year horizon show substantially lower costs than diesel pumping, with a break-even point in the first year under a replacement scenario. The PV system also reduces operational emissions by approximately 4.6 t CO₂e per rice growing season, supporting sustainable irrigation transitions in groundwater-dependent regions

Full text article

Generated from XML file

References

Adiyasuren, E., & Dei, T. (2019). Study on seasonal adjustment of solar PV tilt angle around the north of 45th parallel. Journal of Energy and Power Engineering, 13(7), 251–257. https://doi.org/10.17265/1934-8975/2019.07.002

Anusree, M., Sarika, S., Jain, N. S., Nair, A. M., Sidharth, S., Prasad, R., Sreelatha, K., Soundarapandiyan, K., Suresh, M., Malavika, L., Sathidevi, V., Manoj, K., Raji, G., & Ibrahim, S. (2022). A case study on rising petrol and diesel prices in fourteen cities of India. Journal of Pharmaceutical Negative Results, 13(SO3). https://doi.org/10.47750/pnr.2022.13.s03.069

Balasubramanya, S., Garrick, D., Brozović, N., Marston, L., Siderius, C., Danert, K., Mehta, P., Balasubramanya, S., Hoque, S. F., Joshi, D., Lefore, N., Mukherji, A., Pande, S., Suhardiman, D., & Urfels, A. (2024). Risks from solar-powered groundwater irrigation. Science, 383(6680), 258–260. https://doi.org/10.1126/science.adi9497

Bhatia, S., & Singh, S. P. (2024). Assessing Groundwater Use Efficiency and Productivity across Punjab Agriculture: District and Farm Size Perspectives. Agriculture, 14(8), 1299. https://doi.org/10.3390/agriculture14081299

Bhatt, S., & Kalamkar, S. S. (2017). Solar power generation and usage in irrigation: Lessons from a novel cooperative initiative in India. Indian Journal of Economics and Development, 13(4), 635–642. https://doi.org/10.5958/2322-0430.2017.00198.6

Bureau of Energy Efficiency. (2024). India energy scenario for the year 2023-2024. Retrieved from https://beeindia.gov.in/sites/default/files/BEE_India_Energy_Scenario_Report-2024_web_version-rev2.pdf

Closas, A., & Rap, E. (2017). Solar-based groundwater pumping for irrigation: Sustainability, policies, and limitations. Energy Policy, 104, 33–37. https://doi.org/10.1016/j.enpol.2017.01.035

Daccache, A., Ciurana, J. S., Diaz, J. a. R., & Knox, J. W. (2014). Water and energy footprint of irrigated agriculture in the Mediterranean region. Environmental Research Letters, 9(12), 124014. https://doi.org/10.1088/1748-9326/9/12/124014

Durga, N., Schmitter, P., Ringler, C., & Gebrechorkos, S. H. (2024). Barriers to the uptake of solar-powered irrigation by smallholder farmers in sub-Saharan Africa: A review. Energy Strategy Reviews, 52, Article 101294. https://doi.org/10.1016/j.esr.2024.101294

Kaldellis, J. K., Kavadias, K. A., & Zafirakis, D. (2012). Experimental validation of the optimum photovoltaic panels' tilt angle for remote consumers. Renewable Energy, 46, 179–191. https://doi.org/10.1016/j.renene.2012.03.020

Kafle, K., Uprety, L., Shrestha, G., Sapkota, A., & Ghimire, S. (2022). Are climate finance subsidies equitably distributed among farmers? Assessing socio-demographics of solar irrigation in Nepal. Energy Research & Social Science, 91, Article 102756. https://doi.org/10.1016/j.erss.2022.102756

Kishore, A., Shah, T., & Tewari, N. P. (2014). Solar irrigation pumps: Farmers' experience and state policy in Rajasthan. Economic & Political Weekly, 49(10), 55-62. Retrieved from https://www.epw.in/journal/2014/10/special-articles/solar-irrigation-pumps.html

Kumar, R., Kumr, A., Rohilla, A. K., & Chand, P. (2025). Comparative analysis of constraints faced by solar water pump adopters and non adopters in Haryana and Rajasthan, India. Asian Journal of Agricultural Extension, Economics and Sociology, 43(7), 279–289. https://doi.org/10.9734/ajaees/2025/v43i72793

Mekonnen, D. K., Payen, J., Yimam, S., & Ringler, C. (2024). Mapping the risk posed to groundwater-dependent ecosystems by uncontrolled access to photovoltaic water pumping in Sub-Saharan Africa (Policy Research Working Paper No. 10935). World Bank. https://doi.org/10.1596/1813-9450-10935

Nazir, M. S., & Ashraf, S. (2024). Performance evaluation of selected state and farmer managed irrigation systems in Punjab, Pakistan. Ecological Frontiers, 45(1), 85–97. https://doi.org/10.1016/j.ecofro.2024.09.003

NRDC International. (2018). Worth their salt: Improving livelihoods of women salt farmers through clean energy in the salt pans of Gujarat. Retreived from https://www.nrdc.org/sites/default/files/worth-their-salt-improving-livelihoods-of-women-salt-farmers-through-clean-energy-in-the-salt-pans-of-gujarat_2018-09-10.pdf

Prabhjyot-Kaur, N., Kaur, H., & Bains, N. S. (2025). Rice cultivation a contributor to climate change in Indian Punjab – A perspective. Theoretical and Applied Climatology, 156(2). https://doi.org/10.1007/s00704-025-05374-6

Qin, J., Duan, W., Zou, S., Chen, Y., Huang, W., & Rosa, L. (2024). Global energy use and carbon emissions from irrigated agriculture. Nature Communications, 15(1), 3084. https://doi.org/10.1038/s41467-024-47383-5

Rathore, P. K. S., Das, S. S., & Chauhan, D. S. (2018). Perspectives of solar photovoltaic water pumping for irrigation in India. Energy Strategy Reviews, 22, 385–395. https://doi.org/10.1016/j.esr.2018.10.009

Ruan, T., Wang, F., Topel, M., Laumert, B., & Wang, Q. (2024). A new optimal PV installation angle model in high-latitude cold regions based on historical weather big data. Applied Energy, 361, Article 122690. https://doi.org/10.1016/j.apenergy.2024.122690

Satpute, S., & Singh, M. C. (2024). Improved irrigation and groundwater management for reducing CO2 emissions: a case study of Indian Punjab. Mitigation and Adaptation Strategies for Global Change, 29(3). https://doi.org/10.1007/s11027-024-10117-5

Shabbir, A., Shah, T. H., & Qasim, W. (2023). Enhancing sustainability of solar irrigation pumping systems: A technical and economic evaluation of single and multi-crystalline silicon solar panels using system advisory model. Proceedings of the International Conference on Emerging Power Technologies (ICEPT), Pakistan, 1-6. https://doi.org/10.1109/icept58859.2023.10152340

Sidhu, N. B., Sharda, N. R., & Singh, N. S. (2021). An assessment of water footprint for irrigated rice in Punjab. Journal of Agrometeorology, 23(1), 21–29. https://doi.org/10.54386/jam.v23i1.84

Terang, B., & Baruah, D. C. (2023). Techno-economic and environmental assessment of solar photovoltaic, diesel, and electric water pumps for irrigation in Assam, India. Energy Policy, 183, 113807. https://doi.org/10.1016/j.enpol.2023.113807

Trina Solar. (2026). Vertex backsheet monocrystalline module. Retrieved from https://pages.trinasolar.com/DE18M.html

Watto, M. A., Shabir, M., Sher, A., & Khan, M. A. A. (2024). Solar-powered irrigation systems: Recent developments and future trends. In J. W. Knox (Ed.), Improving water management in agriculture: Irrigation and food production (pp. 209-232). Burleigh Dodds Series in Agricultural Science. Cambridge, UK: Burleigh Dodds Science Publishing Limited. https://doi.org/10.19103/AS.2023.0123.11

Xie, C. (2025). Hysteresis energy management for hybrid hydrogen-electric systems: Optimizing operational efficiency, reliability, and capacity configuration. International Journal of Hydrogen Energy, 199, 152850. https://doi.org/10.1016/j.ijhydene.2025.152850

Yupanqui, C., Dias, N., Goodarzi, M.R., Sharma, S., Vagheei, H., & Mohtar, R. (2025). A review of water-energy-food nexus frameworks, models, challenges and future opportunities to create an integrated, national security-based development index. Energy Nexus, 18, 100409. https://doi.org/10.1016/j.nexus.2025.100409

Zegait, R., Bentraia, M. R., Bensaha, H., & Azlaoui, M. (2022). Comparative study of a pumping system using conventional and photovoltaic power in the Algerian Sahara (Application to Pastoral Wells). International Journal of Engineering Research in Africa, 60, 63–74. https://doi.org/10.4028/p-6sxg2q

Zhu, W., Li, Y., Xu, Y., Zhang, L., Guo, B., Xiong, R., & Xie, C. (2024). Interval prediction of fuel cell degradation based on voltage signal frequency characteristics with TimesNet-GPR under dynamic conditions. Journal of Cleaner Production, 486, 144503. https://doi.org/10.1016/j.jclepro.2024.144503

Authors

Muhammad Zurhalki
zurhalki19@gmail.com (Primary Contact)
Najib Hassan
Andika Prasetiadi
Xinhui Wang
Joydip Saha
Nanang Dwi Wahyono
Zurhalki, M., Hassan, N., Prasetiadi, A., Wang, X., Saha, J., & Wahyono, N. D. (2026). Design and Techno-Economic Evaluation of a Solar Photovoltaic Groundwater Pumping System for Irrigation and Rural Water Supply in Punjab, India . AMPLITUDO : Journal of Science and Technology Innovation, 5(1), 168–173. https://doi.org/10.56566/amplitudo.v5i1.603
Copyright and license info is not available

Article Details