Outlier Identification Techniques in Daily Rainfall Data
Abstract
A quality test was conducted on daily rainfall data in the Sumatra region to select good data. The data used came from 19 observation stations belonging to the Meteorology, Climatology, and Geophysics Agency (BMKG) spread across the Aceh-Lampung provinces from early 1985 to late 2023. The quality test aims to ensure data reliability, consistency, and validity. Daily rainfall data often face issues such as missing data, unrealistic extreme values, and recording discrepancies, which can reduce the accuracy of climate analysis. The quality test examined data completeness and outliers using the interquartile range. The quality test results showed a data completeness level of 93%, thus declaring the data valid. Outliers were identified in small amounts (<1%) for very high rainfall intensity at the Minangkabau meteorological station in West Sumatra (470 mm/day), the Bengkulu climatological station (400 mm/day), the FL Tobing meteorological station in North Sumatra (430 mm/day), the Fatmawati Soekarno meteorological station in Bengkulu (390 mm/day), the West Sumatra climatological station (320 mm/day), the South Sumatra climatological station (230 mm/day), and the Radin Intan II meteorological station in Lampung (265 mm/day). These values were not removed from the analysis because they passed the data quality test and represented meteorologically realistic extreme rainfall events. The results of the evaluation of daily rainfall data in Sumatra during the study were representative and reliable enough to be used in further climatological analysis.
Full text article
References
Adilah, N. A. G., Zarif, M., & Idris, A. M. (2020). Rainfall trend analysis using box plot method: case study UMP Campus Gambang and Pekan (Konferensi). Universiti MalaysiaPahang. http://umpir.ump.edu.my/id/eprint/26775/1/66.
Akhsan, H. ., Irfan, M., Supari, & Iskandar, I. (2023). Dynamics of Extreme Rainfall and Its Impact on Forest and Land Fires in the Eastern Coast of Sumatra. Science and Technology Indonesia, 8(3), 403–413. https://doi.org/10.26554/sti.2023.8.3.403-413
Aldrian, E., & Dwi Susanto, R. (2003). Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. International Journal of Climatology, 23(12), 1435–1452. https://doi.org/10.1002/joc.950.
An, D., Eggeling, J., Zhang, L., He, H., Sapkota, A., Wang, Y. C., & Gao, C. (2023). Extreme precipitation patterns in the Asia–Pacific region and its correlation with ENSO. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-38317-0.
Anguilar, Enric., Auer, Inge., Brunet, Manola., Peterson, Thomas C., Wieringa, Jon. (2003). Guidelines on Climate Meta data and Homogenization. Climate Change Research Group, University Rovira Virgili, Tarragona, Spain.
Ariska, M., Akhsan, H., Muslim, M. (2022). Impact Profile of Enso and Dipole Mode on Rainfall as Anticipation of Hydrometeorological Disasters in the Province of South Sumatra. J. Fisika, & Aplikasinya, D. https://doi.org/10.21009/Spektra.
Ariska, M., Putriyani, F. S., Akhsan, H., Supari, S., Irfan, M., & Iskandar, I. (2023). Trend of Rainfall Pattern in Palembang for 20 Years and Link to ENSO. Jurnal Ilmiah Pend. FisikaAl-Biruni, 12(1), 67. https://doi.org/10.24042/jipfalbiruni.v12i1.15525.
Ariska, M., Suhadi, Supari, Irfan, M., & Iskandar, I. (2024). Spatio-Temporal Variations of Indonesian Rainfall and Their Links to Indo-Pacific Modes. Atmosphere, 15(9). https://doi.org/10.3390/atmos15091036.
As-syakur, A. R., Adnyana, I. W. S., Mahendra, M. S., Arthana, I. W., Merit, I. N., Kasa, I. W., Ekayanti, N. W., Nuarsa, I. W., & Sunarta, I. N. (2014). Observation of spatial patterns on the rainfall response to ENSO and IOD over Indonesia using TRMM Multisatellite Precipitation Analysis (TMPA). International Journal of Climatology, 34(15), 3825–3839. https://doi.org/10.1002/joc.3939.
Baranowsk, Dariusz B., Flatau, Maria K., Flatau, Piotr J., Karnawati, Dwikorita., Barabasz, Katarzyna., Labuz, Michal., Latos, Beata., Schmidt, Jerome M., Paski, Jaka A. I., Marzuki. (2020). Social-media and newspaper reports reveal large scale meteorological drivers of floods on Sumatra. Natural Communication. In Sci. Adv (Vol. 10). https://doi.org/10.1038/s41467-020-16171-2. email: dbaranowski@igf.edu.pl.
Bao, J., Stevens, B., Kluft, L., & Muller, C. (2024). Intensification of daily tropical precipitation extremes from more organized convection. Science advances, 10(8), eadj6801. https://doi.org/10.1126/sciadv.adj6801
Cai, W., Zheng, X. T., Weller, E., et al. (2013). Projected response of the Indian Ocean Dipole to greenhouse warming. Nature Geoscience, 6(12), 999–1007. https://doi.org/10.1038/ngeo2009.
Chang, C.-P., Wang, Z., Mcbride, J., & Liu, C.-H. (2005). Annual Cycle of Southeast Asia-Maritime Continent Rainfall and the Asymmetric Monsoon Transition.
Chen, Y., Teo, F. Y., Wong, S. Y., Chan, A., Weng, C., & Falconer, R. A. (2025). Monsoonal Extreme Rainfall in Southeast Asia: A Review. In Water Vol. 17, Issue 1. MultidisciplinaryDigital Publishing Institute (MDPI). https://doi.org/10.3390/w17010005.
Cheng, V. Y. S., Wang, X. L., & Feng, Y. (2024). A Quality Control System for Historical in Situ Precipitation Data. Atmosphere Ocean, 62(4), 271–287. https://doi.org/10.1080/07055900.2024.2394836.
Contractor, S., Donat, M. G., Alexander, L. v., Ziese, M., Meyer-Christoffer, A., Schneider, U., Rustemeier, E., Becker, A., Durre, I., & Vose, R. S. (2020). Rainfall Estimates on a Gridded Network (REGEN) - A global land-based gridded dataset of daily precipitation from 1950 to 2016. Hydrology and Earth System Sciences, 24(2), 919–943. https://doi.org/10.5194/hess-24-919-2020.
Dandrifosse, S., Jago, A., Huart, J. P., Michaud, V., Planchon, V., & Rosillon, D. (2024). Automatic quality control of weather data for timely decisions in agriculture. Smart Agricultural Technology, 8. https://doi.org/10.1016/j.atech.2024.100445.
Estévez, J., Labrés-Brustenga, A., Casas-Castillo, M. C., García-Marín, A. P., Kirchner, R., Rodríguez-Solà, R. (2022). A quality control procedure for long-term series of daily precipitation data in a semiarid environment. Theoretical and Applied Climatology, 149(3–4), 1029–1041. https://doi.org/10.1007/00704-022-04089-2.
Fadholi, A., Meteorologi, S., & Abstrak, P. (2013). Studi Dampak El Nino dan IOD Terhadap Curah Hujan di Pangkalpinang. Jurnal Ilmu Lingkungan. 12(2). 43–50. https://doi.org/10.14710/jil.11.1.43-50
Fauzi, F., Kharisudin, I., Wasono, R., Utami, T. W., & Harmoko, I. W. (2014). Thermal Stress Projection Based On Temperature-Humidity Index (Thi) Under Climate Change Scenario. Jurnal Meteorologi Dan Geofisika, 24(1), 65–73. https://doi.org/10.31172/jmg.v24i1.867
Hachem, El A., Seidel, J., O’hara, T., Villalobos Herrera, R., Overeem, A., Uijlenhoet, R., Bárdossy, A., & de Vos, L. (2024). Technical note: A guide to using three open-source quality control algorithms for rainfall data from personal weather stations. Hydrology and Earth System Sciences, 28(20), 4715–4731. https://doi.org/10.5194/hess-28-4715.
Hanifa, R., & Wiratmo, J. (2024). ENSO and IOD Influence on Extreme Rainfall in Indonesia: Historical and Future Analysis. Agromet, 38(2), 78–87. https://doi.org/10.29244/j.agromet.38.2.78-87.
Hermawan, E. (2010). Pengelompokan pola curah hujan yang terjadi di beberapa kawasan Pulau Sumatera berbasis hasil analisis teknik spektral. Jurnal Meteorologi dan Geofisika, 11(2). https://doi.org/10.31172/jmg.v11i2.67.
Hunziker, S., Brönnimann, S., Calle, J., Moreno, I., Andrade, M., Ticona, L., Huerta, A., & Lavado-Casimiro, W. (2018). Effects of undetected data quality issues on climatological analyses. Climate of the Past, 14(1), 1–20. https://doi.org/10.5194/cp-14-1-2018.
Irfan, M., Safrina, S., Awaluddin, Sulaiman, A., Virgo, F., & Iskandar, I. (2022). Analysis of Rainfall and Temperature Dynamics in Peatlands During 2018-2021 Climate Change. International Journal of Geomate, 23(99), 41–47. https://doi.org/10.21660/2022.99.3562.
Jeong, D. H., Behera, P., Jeong, B. K., Luna Sangama, C. D., Higgs, B., & Ji, S. Y. (2025). Designing an Interactive Visual Analytics System for Precipitation Data Analysis. Applied Sciences (Switzerland), 15(10). https://doi.org/10.3390/app15105467.
Junaidi, J. (2014). Deskripsi data melalui box-plot. Fakultas Ekonomi dan Bisnis, Universitas Jambi. https://repository.unja.ac.id/id/eprint/118.
Kasih, B. T. H., Juaeni, I., & Harijono, S. W. B. (2007). Proses meteorologis bencana banjir di Indonesia. Jurnal Meteorologi dan Geofisika, 8(2). https://doi.org/10.31172/jmg.v8i2.12.
Khaldun, Ibnu. M. H., Wirasatriya, A., Dwi Suryo, A. A., & Kunarso. (2018). The Influence of IOD on the Variability of STT and Precipitation in Sumatera Island. IOP Conference Series: Earth and Environmental Science, 165(1). https://doi.org/10.1088/1755-1315/165/1/012008.
Kurniadi, A., Weller, E., Min, S. K., & Seong, M. G. (2021). Independent ENSO and IOD Impacts on rainfall extremes over Indonesia. International Journal of Climatology, 41(6), 3640–3656. https://doi.org/10.1002/joc.7040.
Le, Muluken. (2020). Techniques of Filling Missing Values of Daily and Monthly Rain Fall Data: A Review. Department of Bio-systems Engineering, Hawassa University, Hawassa, Ethiopia Sirinka Agriculture Research Center, Woldia, PO. Box 74, Ethiopia. SF J. Environ Earth Sci. 2020; 3(1): 1036. ISSN 2643-8070.
Lestari, S., King, A., Vincent, C., Karoly, D., & Protat, A. (2019). Seasonal dependence of rainfall extremes in and around Jakarta, Indonesia. Weather and Climate Extremes, 24. https://doi.org/10.1016/j.wace.2019.100202.
Mardiansyah, W., Setiabudidaya, D., Yusup, M., Khakim, N., Yustian, I., Dahlan, Z., & Iskandar, I. (2018). On the Influence of Enso and IOD on Rainfall Variability over the Musi Basin, South Sumatra. In Science and Technology Indonesia (Vol. 3, Issue 4). https://doi.org/11.26554/sti.2218.3.4.157-163.
Marpaung, S., Satiadi, D. (2012). Analisis Kejadian Curah Hujan Ekstrem di Pulau Sumatera Berbasis Data Satelit TRMM dan Observasi Permukaan (Analysis of Extreme Rainfall Events Over the Sumatera Island Based on TRMM Satellite Data and Surface Observation). Jurnal Sains Danantara. 2(1). Retrieved from https://www.semanticscholar.org/paper/..24bd42c5b18c7
Mohanned A. Hael & Yongsheng Yuan (2020). Identifying Extreme Rainfall Events Using Functional Outliers Detection Methods. Journal of Data Analysis and Information Processing, 8(4), 282–294. https://doi.org/10.4236/jdaip.2020.84016.
Muhammad, F. R., Lubis, S. W., & Setiawan, S. (2020). Atmospheric Science Impacts of the Madden-Julian Oscillation on Precipitation Extremes in Indonesia. International Journal of Climatology. 2020(November). https://doi.org/10.1002/joc.6941
Marzuki., Yusnaini, Helmi., Tangang, Fredolin., Muharsyah, Robi., Vonnisa, Mutya., Harmadi. (2020). Land Sea Contrast of Diurnal Cycle Characteristics and Rain Event Propagations over Sumatra According to Different Rain Duration and Seasons. Atmospheric Research. Volume 270. https://doi.org/10.1016/j.atmosres.2022.106051
Nur’utami, M. N., & Hidayat, R. (2016). Influences of IOD and ENSO to Indonesian Rainfall Variability: Role of Atmosphere-ocean Interaction in the Indo-pacific Sector. Procedia Environmental Sciences, 33, 196–203. https://doi.org/10.1016/j.proenv.2016.03.070.
Nuryanto, D. E. (2013). Karakteristik curah hujan abad 20 di Jakarta berdasarkan kejadian iklim global. Jurnal Meteorologi dan Geofisika, 14(3), 139–147. https://doi.org/10.31172/jmg.v14i3.165.
Ośródka, K., Otop, I., & Szturc, J. (2022). Automatic quality control of telemetric rain gauge data providing quantitative quality information. Atmospheric Measurement Techniques, 15(19), 5581–5597. https://doi.org/10.5194/amt-15-5581-2022.
Ouyang, H., Qin, Z., Xu, X., Xu, Y., Huangfu, J., Li, X., Hu, J., Zhan, Z., & Yu, J. (2025). Autonomous quality control of high spatiotemporal resolution automatic weather station precipitation data. Remote Sensing, 17(3), 404. https://doi.org/10.3390/rs17030404.
Pakpahan, S., Nasution, T. I., & Sinambela, M. (2023). Characteristics of Extreme Rainfall Events in North Sumatra. Prisma Sains: Jurnal Pengkajian Ilmu Pembelajaran Matematika dan IPA IKIP Mataram, 11(2), 407. https://doi.org/10.33394/j-ps.v11i2.7755.
Pariyar, Sunil Kumar., Keenlyside, Noel., Sorteberg, Asgeir., Spengler, Thomas., Bhatt, Bhuwan Chandra., Ogawa., Fumiaki. (2020). Factors affecting extreme rainfall events in the South Pacific. Weather and Climate Extremes. Volume 29. https://doi.org/10.1016/j.wace.2020.100262
Prasetyo, H., Irwandi, & Pusparini, N. (2018). Karakteristik curah hujan berdasarkan ragam topografi di Sumatera Utara. Jurnal Sains dan Teknologi Modifikasi Cuaca, 19(1), 11–20. https://doi.org/10.29122/jstmc.v19i1.2787.
Salehy, Ali Suliman Al., Bailey, Mike. (2025). Improving Time Series Data Quality: Identifying Outliers and Handling Missing Values in a Multilocation Gas and Weather Dataset. Smart Cities2025, 8, 82. https://doi.org/10.3390/smartcities8030082.
Sudirman, Akhsan, H., Ariska, M., & Pratama, D. I. (2024). Analisis hubungan El Niño atau IOD positif terhadap curah hujan ekstrem di Pesisir Barat Sumatera. Jurnal Inovasi dan Pembelajaran Fisika, 11(1), 81–95. https://doi.org/10.3670/jipf.v11i1.296
Supari, Tangang, F., Juneng, L., & Aldrian, E. (2017). Observed changes in extreme temperature and precipitation over Indonesia. International Journal of Climatology, 37(4), 1979–1997. https://doi.org/10.1002/joc.4829.
Swarinoto, Y. S., & Husain, H. (2012). Estimasi curah hujan harian dengan metode Auto Estimator (Kasus Jayapura dan sekitarnya). Jurnal Meteorologi dan Geofisika, 13(1). https://doi.org/10.31172/jmg.v13i1.118.
Tank, Klein., Zhang, Xuebin. (2009). Guidelines on Analysis of extremes in a changing climate in support of informed decisions for adaptation. Royal Netherlands Meteorological Institute Francis W. Zwiers, Environment Canada. Retrieved from http://www.clivar.org/organization/etccdi/etccdi.php.
Villalobos-Herrera, R., Blenkinsop, S., Guerreiro, S. B., O’Hara, T., & Fowler, H. J. (2022). Sub-hourly resolution quality control of rain-gauge data significantly improves regional sub-daily return level estimates. Quarterly Journal of the Royal Meteorological Society, 148(748), 3252–3271. https://doi.org/10.1002/qj.4357.
Westra, S., Fowler, H. J., Evans, J. P., Alexander, L. v., Berg, P., Johnson, F., Kendon, E. J., Lenderink, G., & Roberts, N. M. (2014). Future changes to the intensity and frequency of short-duration extreme rainfall. In Reviews of Geophysics (Vol. 52, Issue 3, pp. 522–555). Blackwell Publishing Ltd. https://doi.org/10.1002/2014RG000464.
Wibawanty, D. R., Santikayasa, I. P., & Supari. (2025). Identifying Prolonged Zero Value Periods as Part of Quality Control on Daily Rainfall Records in East Java, Indonesia. Journal of the Civil Engineering Forum, 11(2), 147–154. https://doi.org/10.22146/jcef.12720.
Yan, Q., Zhang, B., Jiang, Y., Liu, Y., Yang, B., & Wang, H. (2024). Quality control of hourly rain gauge data based on radar and satellite multi-source data. Journal of Hydroinformatics, 26(5), 1042–1058. https://doi.org/10.2166/hydro.2024.272.
Xu, K., Zhu, C., & Wang, W. (2016). The cooperative impacts of the ENSO and the IOD on the interannual variability of autumn rainfall in China. International Journal of Climatology, 36(7), 1987–1999. https://doi.org/10.1002/joc.4475.
Zaini, A. Z. A., Vonnisa, M., Marzuki, M., & Ramadhan, R. (2023). Seasonal variation of rainfall in Indonesia under normal conditions without ENSO and IOD events from 1981–2021. Jurnal Penelitian Pendidikan IPA, 9(11), 9899–9909. https://doi.org/10.29303/jppipa.v9i11.4569.
Zehri, S., Yulihastin, E., Marpaung, F., Adiputra, A., Mushoddik, Purwadani, N. N., & Gammamerdianti. (2025). Diverse impact of 2023 El Niño on weather patterns over the Indonesian Maritime Continent. Journal of Southern Hemisphere Earth Systems Science , 75(2). https://doi.org/10.1071/ES25005.
Zhao, C., & Yang, J. (2019). A Robust Skewed Boxplot for Detecting Outliers in Rainfall Observations in Real-Time Flood Forecasting. Advances in Meteorology, 2019. https://doi.org/10.1155/2019/1795673.