Systematic Analysis of Quality-of-Service Optimization Strategies in Software-Defined Network Environments
Abstract
Software-Defined Networking (SDN) heralds the future of networks with its programmability, centralized control, and flexibility that could easily surpass traditional networks in managing Quality-of-Service (QoS). This literature review, adhering to PRISMA 2020 guidelines, selects 62 studies from 1,142 initially found and published between 2016 and mid-2025, all of them peer-reviewed articles and obtained from four databases, IEEE Xplore, Scopus, Web of Science, and ScienceDirect. The review highlights six chief SDN-based research QoS enhancement methods: the machine, deep, and reinforcement learning methods; dynamic queuing and scheduling; controller positioning and load balancing; policy- or intent-based frameworks; telemetry-based closed-loop control; and combined SDN and legacy integration. The majority of the studies explore both data and control planes simultaneously. Improved performance parameters such as latency, throughput, jitter, and packet loss have been reported in the outcome, however, these results mostly come from small-scale testbeds, simulations, and synthetic workloads with very limited real-world deployment, security evaluation, energy assessment, or hardware-based validation. In any case, SDN is still considered to be an option for carrier-grade QoS optimization but its operational suitability is still not clear. Future research should focus on reproducible, realistic, and operationally grounded assessments to close the gap between theoretical promise and large-scale industrial implementation
Full text article
References
Abd, D. F., Sidqi, H. M., & Ahmed, O. H. (2025). Systematic Review of Software-Defined Networking Congestion Control: Challenges and Future Directions. The Scientific Journal of Cihan University–Sulaimaniya, 9(1), 158-184. https://doi.org/10.25098/9.1.33
Abdelghany, H. M., Zaki, F. W., & Ashour, M. M. (2023). An algorithm to improve quality of service for software-defined networking. Journal of Ambient Intelligence and Humanized Computing, 14(8), 10823-10832. https://doi.org/10.1007/s12652-022-04353-3
Abood, M. S., Wang, H., Virdee, B. S., He, D., Fathy, M., Yusuf, A. A., ... & Ahmad, A. (2024). Improved 5G network slicing for enhanced QoS against attack in SDN environment using deep learning. IET Communications, 18(13), 759-777. https://doi.org/10.1049/cmu2.12735
Alenazi, M. J., & Ali, J. (2024). An effective deep-Q learning scheme for QoS improvement in physical layer of software-defined networks. Physical Communication, 66, 102387. https://doi.org/10.1016/j.phycom.2024.102387
Al-Haddad, R., & Velazquez, E. S. (2019). A survey of quality of service (QoS) protocols and software-defined networks (SDN). In Advances in Intelligent Systems and Computing (Vol. 734, pp. 363–372). Springer. https://doi.org/10.1007/978-3-030-01177-2_38
Ali, I., Hong, S., & Cheung, T. (2024). Quality of Service and Congestion Control in Software-Defined Networking Using Policy-Based Routing. Applied Sciences, 14(19), 9066. https://doi.org/10.3390/app14199066
Ali, J., Roh, B.-H., & Lee, S. (2019). QoS improvement with an optimum controller selection for software-defined networks. PLOS ONE, 14(5), e0217631. https://doi.org/10.1371/journal.pone.0217631
Al Jawad, A., Shah, P., Gemikonakli, O., & Trestian, R. (2018). Policy based QoS management framework for software defined networks. In 2018 International Symposium on Networks, Computers and Communications (ISNCC). https://doi.org/10.1109/ISNCC.2018.8530994
Awad, M. K., Ahmed, M. H. H., Almutairi, A. F., & Ahmad, I. (2021). Machine learning-based multipath routing for software defined networks. Journal of Network and Systems Management, 29(2), 18. https://doi.org/10.1007/s10922-020-09583-4
Babayigit, B., Ulu, B., & Abubaker, M. (2023). Survey studies of software-defined networking: a systematic review and meta-analysis. Engineering Journal, 27(10), 33-66. https://www.engj.org/index.php/ej/article/view/4514
Belgaum, M. R., Musa, S., Alam, M. M., & Su’ud, M. M. (2020). A systematic review of load balancing techniques in software-defined networking. Ieee Access, 8, 98612-98636. https://doi.org/10.1109/ACCESS.2020.2995849
Bi, Y., Han, G., Lin, C., Peng, Y., Pu, H., & Jia, Y. (2019). Intelligent quality of service aware traffic forwarding for software-defined networking/open shortest path first hybrid industrial internet. IEEE Transactions on Industrial Informatics, 16(2), 1395-1405. https://doi.org/10.1016/j.dcan.2022.11.016
Mehraban, S., & Yadav, R. K. (2022, June). Quality of services in hybrid sdn (hsdn): A review. In 2022 7th International Conference on Communication and Electronics Systems (ICCES) (pp. 652-658). IEEE. https://doi.org/10.1109/ICCES54183.2022.9835774
Bouzidi, E. H., Outtagarts, A., & Langar, R. (2019, December). Deep reinforcement learning application for network latency management in software defined networks. In 2019 IEEE Global Communications Conference (GLOBECOM) (pp. 1-6). IEEE. https://doi.org/10.1109/GLOBECOM38437.2019.9013221
Bouzidi, E. H., Outtagarts, A., Langar, R., & Boutaba, R. (2021). Deep Q-Network and traffic prediction-based routing optimization in software defined networks. Journal of Network and Computer Applications, 192, 103181. https://doi.org/10.1016/j.jnca.2021.103181
Canovas, A., Rego, A., Romero, O., & Lloret, J. (2020). A robust multimedia traffic SDN-Based management system using patterns and models of QoE estimation with BRNN. Journal of Network and Computer Applications, 150, 102498. https://doi.org/10.1016/j.jnca.2019.102498
Casas-Velasco, D. M., Rendon, O. M. C., & da Fonseca, N. L. (2021). DRSIR: A deep reinforcement learning approach for routing in software-defined networking. IEEE Transactions on Network and Service Management, 19(4), 4807-4820. https://doi.org/10.1109/TNSM.2021.3132491
Chen, J., Liao, C., Wang, Y., Jin, L., Lu, X., Xie, X., & Yao, R. (2022). AQMDRL: Automatic quality of service architecture based on multistep deep reinforcement learning in software-defined networking. Sensors, 23(1), 429. https://doi.org/10.3390/s23010429
Farahi, R. (2025). A comprehensive overview of load balancing methods in software-defined networks. Discover Internet of Things, 5(1), 6. https://doi.org/10.1007/s43926-025-00098-5
Ghafoor, K. Z., Kong, L., Rawat, D. B., Hosseini, E., & Sadiq, A. S. (2018). Quality of service aware routing protocol in software-defined internet of vehicles. IEEE Internet of Things Journal, 6(2), 2817-2828. https://doi.org/10.1109/JIOT.2018.2875482
Ghafoor, S., & Aziz, S. (2023). A comprehensive survey on machine learning using in software defined networks (SDN). Human-Centric Intelligent Systems, 3, 192–207. https://doi.org/10.1007/s44230-023-00025-3
Gupta, A., & Jha, R. K. (2024). An overview of QoS-aware load balancing techniques in SDN-based IoT networks. Journal of Cloud Computing, 13, Article 65. https://doi.org/10.1186/s13677-024-00651-7
Hock, D., Hartmann, M., Gebert, S., Jarschel, M., Zinner, T., & Tran-Gia, P. (2013). Pareto-optimal resilient controller placement in SDN-based core networks. In Proceedings of the 25th International Teletraffic Congress (pp. 1–9). IEEE. https://doi.org/10.1109/ITC.2013.6655316
Mehraban, S., & Yadav, R. K. (2025). Routing Optimization in Hybrid Software-Defined Networks: A Heuristic Approach. IETE Journal of Research, 1-19. https://doi.org/10.1080/03772063.2025.2506011
Islam, M. A., Atat, R., & Ismail, M. (2024). Software-Defined Networking Based Resilient Proactive Routing in Smart Grids Using Graph Neural Networks and Deep Q-Networks. IEEE Access. https://doi.org/10.1109/ACCESS.2024.3438938
Kamboj, P., & Pal, S. (2021). A policy based framework for quality of service management in software defined networks. Telecommunication Systems, 78(3), 331-349. https://doi.org/10.1007/s11235-021-00816-8
Karakus, M., & Durresi, A. (2017). Quality of service (QoS) in software defined networking (SDN): A survey. Journal of Network and Computer Applications, 98, 200–224. https://doi.org/10.1016/j.jnca.2016.12.019
Keshari, S. K., Kansal, V., & Kumar, S. (2021). A systematic review of quality of services (QoS) in software defined networking (SDN). Wireless Personal Communications, 117(4), 2783–2805. https://doi.org/10.1007/s11277-020-07812-2
Kim, G., Kim, Y., & Lim, H. (2022). Deep reinforcement learning-based routing on software-defined networks. IEEE Access, 10, 18121-18133. https://doi.org/10.1109/ACCESS.2022.3151081
Li, Y., Chen, M., & Sun, W. (2021). Intelligent traffic control for QoS optimization in hybrid SDNs. Computer Networks, 193, 108091. https://doi.org/10.1016/j.comnet.2021.108091
Lin, G. J., Hung, C. F., & Ke, C. H. (2025). A deep reinforcement learning-based bandwidth demand-oriented routing in software-defined networking. ICT Express. https://doi.org/10.1016/j.icte.2025.07.009
Lozano-Rizk, J. E., Rivera-Rodriguez, R., Nieto-Hipolito, J. I., Villarreal-Reyes, S., Galaviz-Mosqueda, A., & Vazquez-Briseno, M. (2020). Quality of service in software defined networks for scientific applications: Opportunities and challenges. Programming and Computer Software, 46(8), 561-568. https://doi.org/10.1134/S0361768820080149
Lu, K., Du, Z., Li, J., & Min, G. (2022). Resource-efficient distributed deep neural networks empowered by intelligent software-defined networking. IEEE Transactions on Network and Service Management, 19(4), 4069-4081. https://doi.org/10.1109/TNSM.2022.3218173
Malik, A., Aziz, B., Adda, M., & Ke, C. H. (2017). Optimisation methods for fast restoration of software-defined networks. IEEE Access, 5, 16111-16123. https://doi.org/10.1109/ACCESS.2017.2736949
Manzanares Lopez, P., Malgosa Sanahuja, J., & Muñoz Gea, J. P. (2018). A Software Defined Networking Framework to Provide Dynamic QoS Management in IEEE 802.11 Networks. Sensors, 18(7), 2247. https://doi.org/10.3390/s18072247 MDPI
Mehmood, K. T., Atiq, S., & Hussain, M. M. (2023). Enhancing QoS of Telecom Networks through Server Load Management in Software Defined Networking (SDN). Sensors, 23(23), 9324. https://doi.org/10.3390/s23239324
Mohammed, A. R., Mohammed, S. A., & Shirmohammadi, S. (2019, July). Machine learning and deep learning based traffic classification and prediction in software defined networking. In 2019 IEEE International Symposium on Measurements & Networking (M&N) (pp. 1-6). IEEE. https://ieeexplore.ieee.org/abstract/document/8805044/
Moravejosharieh, A., Ahmadi, K., & Ahmad, S. (2018, October). A fuzzy logic approach to increase quality of service in software defined networking. In 2018 International Conference on Advances in Computing, Communication Control and Networking (ICACCCN) (pp. 68-73). IEEE. https://doi.org/10.1109/ICACCCN.2018.8748678
Mehraban, S., & Yadav, R. K. (2025). Traffic Engineering Optimization in Hybrid Software‐Defined Networks: A Mixed Integer Non‐Linear Programming Model and Heuristic Algorithm. International Journal of Network Management, 35(3), e70017. https://doi.org/10.1002/nem.70017
Nuñez-Agurto, D., Fuertes, W., Marrone, L., Benavides-Astudillo, E., Coronel-Guerrero, C., & Perez, F. (2024). A novel traffic classification approach by employing deep learning on software-defined networking. Future Internet, 16(5), 153. https://doi.org/10.3390/fi16050153
Osman, M. F., Isa, M. R. M., Khairuddin, M. A., Shukran, M. A. M., & Razali, N. A. M. (2024). A Novel Network Optimization Framework Based on Software-Defined Networking (SDN) and Deep Learning (DL) Approach. JOIV: International Journal on Informatics Visualization, 8(4), 2082-2089. https://dx.doi.org/10.62527/joiv.8.4.2169
Ospina Cifuentes, B. J., Suárez, Á., García Pineda, V., Alvarado Jaimes, R., Montoya Benitez, A. O., & Grajales Bustamante, J. D. (2024). Analysis of the use of artificial intelligence in software-defined intelligent networks: A survey. Technologies, 12(7), 99. https://doi.org/10.3390/technologies12070099
Prasanth, L. L., & Uma, E. (2024). A computationally intelligent framework for traffic engineering and congestion management in software-defined network (SDN). EURASIP Journal on Wireless Communications and Networking, 2024(1), 63. https://doi.org/10.1186/s13638-024-02392-2
Rezaee, M., & Yaghmaee, M. H. (2020). SDN-based quality of service networking for wide area measurement system. IEEE Transactions on Industrial Informatics, 16(5), 3018–3028. https://doi.org/10.1109/TII.2019.2893865
Salau, A. O., & Beyene, M. M. (2024). Software defined networking based network traffic classification using machine learning techniques. Scientific Reports, 14(1), 20060. Salau, A. O., & Beyene, M. M. (2024). Software defined networking based network traffic classification using machine learning techniques. Scientific Reports, 14(1), 20060. https://doi.org/10.1038/s41598-024-70983-6
Sarma, D., & Kumar, H. (2021). A survey on machine learning and deep learning based quality of service aware protocols for software defined networks. TechRxiv. https://doi.org/10.36227/techrxiv.16950574.v1
Serag, R. H., Abdalzaher, M. S., Elsayed, H. A. E. A., et al. (2025). Software Defined Network Traffic Classification for QoS Optimization Using Machine Learning. Journal of Network and Systems Management, 33, 41. https://doi.org/10.1007/s10922-025-09911-6
Sguotti, G., Troia, S., & Maier, G. (2025, June). On the service-oriented availability analysis of software defined wide area network. In 2025 IEEE 11th International Conference on Network Softwarization (NetSoft) (pp. 388-396). IEEE. https://doi.org/10.1109/NetSoft64993.2025.11080547
Shahzadi, S., Ahmad, F., Basharat, A., Alruwaili, M., Alanazi, S., Humayun, M., ... & Naseem, S. (2020). Machine learning empowered security management and quality of service provision in SDN-NFV environment. Computers, Materials and Continua, 66(3), 2723-2749. https://doi.org/10.32604/cmc.2021.014594
Sodhro, A. H., Pirbhulal, S., Sangaiah, A. K., & Lohano, S. (2019). Quality of service optimization in an IoT-driven intelligent transportation system. IEEE Wireless Communications, 26(6), 10–17. https://doi.org/10.1109/MWC.001.1900085
Srivastava, V., & Pandey, R. S. (2021). Machine intelligence approach: To solve load balancing problem with high quality of service performance for multi-controller-based Software Defined Network. Sustainable Computing: Informatics and Systems, 30, 100511. https://doi.org/10.1109/ICCSC56913.2023.10143010
Syamsu, M., Jixiong, C., & Jie, L. (2023). Quality of Service Management Solution Becomes a Software-Defined Network Challenge. Journal of Computer Science Advancements, 1(4), 215-226. https://doi.org/10.70177/jsca.v1i4.582
Thyagaturu, A. S., Mercian, A., McGarry, M. P., Reisslein, M., & Kellerer, W. (2016). Software defined optical networks (SDONs): A comprehensive survey. IEEE Communications Surveys & Tutorials, 18(4), 2738–2786. https://doi.org/10.1109/COMST.2016.2586999
Wang, G., Zhao, Y., Huang, J., & Wang, W. (2017). The controller placement problem in software defined networking: A survey. IEEE Access, 5, 22777–22795. https://doi.org/10.1109/ACCESS.2017.2766362
Wang, Y., Liu, Y., & Zhang, Z. (2021). Guaranteeing end-to-end QoS provisioning in SOA based SDN architecture: A survey and open issues. Future Generation Computer Systems, 121, 1–15. https://doi.org/10.1016/j.future.2021.02.013
Wassie, G., Ding, J., & Wondie, Y. (2024). Detecting and predicting models for qos optimization in sdn. Journal of Computer Networks and Communications, 2024(1), 3073388. https://doi.org/10.1155/2024/3073388
Wu, Y., Hu, G., Jin, F., & Tang, S. (2021). Multi-objective optimisation in multi-QoS routing strategy for software-defined satellite network. Sensors, 21(19), 6356. https://doi.org/10.3390/s21196356
Xia, D., Wan, J., Xu, P., & Tan, J. (2022). Deep reinforcement learning-based QoS optimization for software-defined factory heterogeneous networks. IEEE Transactions on Network and Service Management, 19(4), 4058-4068. https://doi.org/10.1109/TNSM.2022.3208342
Xie, J., Yu, L., Huang, T., Yu, L., & You, X. (2019). A survey of machine learning techniques applied to software defined networking (SDN): Research issues and challenges. IEEE Communications Surveys & Tutorials, 21(1), 393–430. https://doi.org/10.1109/COMST.2018.2872582
Yu, C., Lan, J., Xie, J., & Hu, Y. (2018). QoS-aware traffic classification architecture using machine learning and deep packet inspection in SDNs. Procedia Computer Science, 131, 1209–1216. https://doi.org/10.1016/j.procs.2018.05.112
Zafar, A., Samad, F., Syed, H. J., Ibrahim, A. O., Alohaly, M., & Elsadig, M. (2023). An Advanced Strategy for Addressing Heterogeneity in SDN IoT Networks for Ensuring QoS. Applied Sciences, 13(13), 7856. https://doi.org/10.3390/app13137856