A Comparative Study of Gadobutrol Relaxivity at 3 Tesla for Sustainable Contrast Management and Standardized Phantom Calibration

Maheran Che Ha’ (1), Izdihar Kamal (2), Mohd Mustafa Awang Kechik (3), Khairil Amir Sayuti (4), Yusri Mohammed (5), Muhammad Khalis Abdul Karim (6), Aris Doyan (7)
(1) Hospital Sultanah Nur Zahirah, Jalan Sultan Mahmud, Kuala Terengganu, Malaysia,
(2) Universiti Putra Malaysia, Selangor, Malaysia,
(3) Universiti Putra Malaysia, Malaysia,
(4) Universiti Sains Malaysia, Kelantan, Malaysia,
(5) Department of Radiology, Hospital Sultan Idris Shah, 43000 Kajang, Selangor, Malaysia, Malaysia,
(6) Universiti Putra Malaysia, Selangor, Malaysia,
(7) Physics Education Program, FKIP, University of Mataram, Indonesia, Indonesia

Abstract

This study aimed to characterize the relaxivity profiles of pure agarose and gadobutrol in 1% (w/v) agarose under two experimental conditions (within the air and tap-water immersion). T1 and T2 values were quantified at 3 Tesla, Siemens, Vida scanner using inversion recovery turbo spin echo (IR-TSE) for T1 and multi-echo turbo spin echo (ME-TSE) for T2. Different concentration of agarose (0.2 – 4.0% w/v) and gadobutrol (0.5 – 6.0 mM) and their T1 and T2 value for each concentration were measured. Pure agarose demonstrated low longitudinal relaxivity (r1 » 0.04 - 0.05 s-1.(%w/v)-1 vs. r1 » 2.97 - 3.52 s-1mM-1) and high transverse relaxivity (r2 » 5.00 - 6.34 s-1.(%w/v)-1 vs. r2 » 3.80 - 4.55 s-1mM-1) compared to gadobutrol. Agarose showed a very high r2/r1 ratio (129.4-160.0) than gadobutrol (1.28-1.29), reflecting stronger gel-matrix effects on transverse dephasing than on longitudinal recovery. Tap-water immersion had shortened T1 by »9% relative to air, without significantly increasing variability. These findings provide relaxivity values for agarose and gadobutrol under well-defined conditions and illustrate how their complementary relaxation behavior can tune T1 and T2 values over a wide range to create customizable MRI calibration phantom for research and clinical use

Full text article

Generated from XML file

References

Antoniou, A., & Damianou, C. (2022). MR relaxation properties of tissue-mimicking phantoms. Ultrasonics, 119. https://doi.org/10.1016/j.ultras.2021.106600

Bane, O., Hectors, S. J., Wagner, M., Arlinghaus, L. L., Aryal, M. P., Cao, Y., Chenevert, T. L., Fennessy, F., Huang, W., Hylton, N. M., Kalpathy-Cramer, J., Keenan, K. E., Malyarenko, D. I., Mulkern, R. V., Newitt, D. C., Russek, S. E., Stupic, K. F., Tudorica, A., Wilmes, L. J., … Taouli, B. (2018). Accuracy, repeatability, and interplatform reproducibility of T1 quantification methods used for DCE-MRI: Results from a multicenter phantom study. Magnetic Resonance in Medicine, 79(5), 2564–2575. https://doi.org/10.1002/mrm.26903

Barison, A., Martini, N., Dellegrottaglie, S., & Pontone, G. (2023). Introduction to Cardiac MRI (p. 11). https://doi.org/10.1007/978-3-031-32593-9_1

Blaszczyk, E., Töpper, A., Schmacht, L., Wanke, F., Greiser, A., Schulz-Menger, J., & von Knobelsdorff-Brenkenhoff, F. (2017). Influence of spatial resolution and contrast agent dosage on myocardial T1 relaxation times. Magnetic Resonance Materials in Physics, Biology and Medicine, 30(1), 85–91. https://doi.org/10.1007/s10334-016-0581-0

Boursianis, T., Kalaitzakis, G., Pappas, E., Karantanas, A. H., & Maris, T. G. (2021). MRI diffusion phantoms: ADC and relaxometric measurement comparisons between polyacrylamide and agarose gels. European Journal of Radiology, 139, 109696. https://doi.org/10.1016/j.ejrad.2021.109696

Brink, W. M., Remis, R. F., & Webb, A. G. (2023). Radiofrequency safety of high permittivity pads in MRI—Impact of insulation material. Magnetic Resonance in Medicine, 89(5), 2109–2116. https://doi.org/10.1002/mrm.29580

Caccavo, D., Cascone, S., Poto, S., Lamberti, G., & Barba, A. A. (2017). Mechanics and transport phenomena in agarose-based hydrogels studied by compression-relaxation tests. Carbohydrate Polymers, 167, 136–144. https://doi.org/10.1016/j.carbpol.2017.03.027

Captur, G., Bhandari, A., Brühl, R., Ittermann, B., Keenan, K. E., Yang, Y., Eames, R. J., Benedetti, G., Torlasco, C., Ricketts, L., Boubertakh, R., Fatih, N., Greenwood, J. P., Paulis, L. E. M., Lawton, C. B., Bucciarelli-Ducci, C., Lamb, H. J., Steeds, R., Leung, S. W., … Moon, J. C. (2020). T 1 mapping performance and measurement repeatability: Results from the multi-national T 1 mapping standardization phantom program (T1MES). Journal of Cardiovascular Magnetic Resonance, 22(1). https://doi.org/10.1186/s12968-020-00613-3

Captur, G., Gatehouse, P., Keenan, K. E., Heslinga, F. G., Bruehl, R., Prothmann, M., Graves, M. J., Eames, R. J., Torlasco, C., Benedetti, G., Donovan, J., Ittermann, B., Boubertakh, R., Bathgate, A., Royet, C., Pang, W., Nezafat, R., Salerno, M., Kellman, P., & Moon, J. C. (2016). A medical device-grade T1 and ECV phantom for global T1 mapping quality assurance—The T1 Mapping and ECV Standardization in cardiovascular magnetic resonance (T1MES) program. Journal of Cardiovascular Magnetic Resonance, 18(1), 58–58. https://doi.org/10.1186/s12968-016-0280-z

Cerussi, A., Durkin, A., Kwong, R., Quang, T., Hill, B., Tromberg, B. J., MacKinnon, N., & Mantulin, W. W. (2010). Quality control and assurance for validation of DOS/I measurements (R. J. Nordstrom, Ed.; p. 756703). https://doi.org/10.1117/12.842755

Dalmer, A., Meinel, F. G., Böttcher, B., Manzke, M., Lorbeer, R., Weber, M.-A., Baeßler, B., & Klemenz, A.-C. (2024). Native myocardial T1 mapping: Influence of spatial resolution on quantitative results and reproducibility. Quantitative Imaging in Medicine and Surgery, 14(1), 20–30. https://doi.org/10.21037/qims-23-943

Dwihapsari, Y., Asdiantoro, E., & Maulidiyah, N. (2020). T2 Quantification of Agarose with Contrast Agent in Magnetic Resonance Imaging. Journal of Physics: Conference Series, 1505(1), 012044. https://doi.org/10.1088/1742-6596/1505/1/012044

Fritz, V., Eisele, S., Martirosian, P., Machann, J., & Schick, F. (2024). A straightforward procedure to build a non-toxic relaxometry phantom with desired T1 and T2 times at 3T. Magnetic Resonance Materials in Physics, Biology and Medicine, 37(5), 899–907. https://doi.org/10.1007/s10334-024-01166-7

Fritz, V., & Schick, F. (2025). Recipe for Hydrogels With Tunable Relaxation and Diffusion Properties for Use as MRI Test Materials. Magnetic Resonance in Medicine, mrm.70120. https://doi.org/10.1002/mrm.70120

Fullerton, G. D., Ord, V. A., & Cameron, I. L. (1986). An evaluation of the hydration of lysozyme by an NMR titration method. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 869(3), 230–246. https://doi.org/10.1016/0167-4838(86)90063-4

Goetschi, S., Froehlich, J. M., Chuck, N. C., Curcio, R., Runge, V. M., Andreisek, G., Nanz, D., & Boss, A. (2014). The Protein and Contrast Agent–Specific Influence of Pathological Plasma-Protein Concentration Levels on Contrast-Enhanced Magnetic Resonance Imaging: Investigative Radiology, 49(9), 608–619. https://doi.org/10.1097/RLI.0000000000000061

Granato, L., Vander Elst, L., Henoumont, C., Muller, R. N., & Laurent, S. (2018). Optimizing Water Exchange Rates and Rotational Mobility for High‐Relaxivity of a Novel Gd‐ DO 3A Derivative Complex Conjugated to Inulin as Macromolecular Contrast Agents for MRI. Chemistry & Biodiversity, 15(2), e1700487. https://doi.org/10.1002/cbdv.201700487

Granitz, M., Motloch, L. J., Granitz, C., Meissnitzer, M., Hitzl, W., Hergan, K., & Schlattau, A. (2019). Comparison of native myocardial T1 and T2 mapping at 1.5T and 3T in healthy volunteers. Wiener Klinische Wochenschrift, 131(7–8), 143–155. https://doi.org/10.1007/s00508-018-1411-3

Hajidah, D. H., & Dwihapsari, Y. (2021). Quantitative T2 magnetic resonance imaging: Analysis of the effect of echo time on images and signal to noise ratio on agarose. 040003. https://doi.org/10.1063/5.0048234

Hamzaini, N. N., Ghazali, S. A., Yusoff, A. N., Mohd Zaki, F., Wan Sulaiman, W. N. A., & Dwihapsari, Y. (2024). FeCl3 and GdCl3 solutions as superfast relaxation modifiers for agarose gel: A quantitative analysis. Magnetic Resonance Materials in Physics, Biology and Medicine, 38(1), 141–160. https://doi.org/10.1007/s10334-024-01216-0

Hattori, K., Ikemoto, Y., Takao, W., Ohno, S., Harimoto, T., Kanazawa, S., Oita, M., Shibuya, K., Kuroda, M., & Kato, H. (2013). Development of MRI phantom equivalent to human tissues for 3.0‐T MRI. Medical Physics, 40(3), 032303. https://doi.org/10.1118/1.4790023

Ikemoto, Y., Takao, W., Yoshitomi, K., Ohno, S., Harimoto, T., Kanazawa, S., Shibuya, K., Kuroda, M., & Kato, H. (2011). Development of a human-tissue-like phantom for 3.0-T MRI. Medical Physics, 38(11), 6336–6342. https://doi.org/10.1118/1.3656077

Jones, C. K., Huang, A., Xu, J., Edden, R. A. E., Schär, M., Hua, J., Oskolkov, N., Zacà, D., Zhou, J., McMahon, M. T., Pillai, J. J., & Van Zijl, P. C. M. (2013). Nuclear Overhauser enhancement (NOE) imaging in the human brain at 7T. NeuroImage, 77, 114–124. https://doi.org/10.1016/j.neuroimage.2013.03.047

Kamal, I., Karim, M. K. A., Harun, H. H., Abdul Razak, H. R., Jian, L. Y., Chyi, J. L. Y., & Kechik, M. M. A. (2021). Evaluation of radiation attenuation properties on a various composition of polydimethylsiloxane (PDMS) for fabrication of kidney phantom. Radiation Physics and Chemistry, 189, 109661. https://doi.org/10.1016/j.radphyschem.2021.109661

Kamal, I., Razak, H. R. A., Abdul Karim, M. K., Mashohor, S., Liew, J. Y. C., Low, Y. J., Zaaba, N. A., Norkhairunnisa, M., & Rafi, N. A. S. M. (2022). Mechanical and Imaging Properties of a Clinical-Grade Kidney Phantom Based on Polydimethylsiloxane and Elastomer. Polymers, 14(3), 535. https://doi.org/10.3390/polym14030535

Kang, K. M., Choi, S. H., Hwang, M., Yun, T. J., Kim, J., & Sohn, C.-H. (2018). T1 Shortening in the Globus Pallidus after Multiple Administrations of Gadobutrol: Assessment with a Multidynamic Multiecho Sequence. Radiology, 287(1), 258–266. https://doi.org/10.1148/radiol.2017162852

Karamitsos, T., & Neubauer, S. (2022). Cardiovascular magnetic resonance imaging. 372–378.

Keenan, K. E., Gimbutas, Z., Dienstfrey, A., Stupic, K. F., Boss, M. A., Russek, S. E., Chenevert, T. L., Prasad, P. V., Guo, J., Reddick, W. E., Cecil, K. M., Shukla-Dave, A., Nunez, D. A., Konar, A. S., Liu, M. Z., Jambawalikar, S. R., Schwartz, L. H., Zheng, J., Hu, P., & Jackson, E. F. (2021). Multi-site, multi-platform comparison of MRI T1 measurement using the system phantom. PLoS ONE, 16(6 June). https://doi.org/10.1371/journal.pone.0252966

Kellman, P., & Hansen, M. (2014). T1-mapping in the heart: Accuracy and precision. Journal of Cardiovascular Magnetic Resonance, 16(1), 2–2. https://doi.org/10.1186/1532-429x-16-2

Lakshmanan, K., Walczyk, J., Brown, R., Rupprecht, S., Yang, Q. X., Lanagan, M. T., & Collins, C. (2020). Improved brain imaging with a head array with integrated high-permittivity material. 020077. https://doi.org/10.1063/5.0034556

Lee, E., Kim, P. K., Choi, B. W., & Jung, J. I. (2020). Phantom-Validated Reference Values of Myocardial Mapping and Extracellular Volume at 3T in Healthy Koreans. Investigative Magnetic Resonance Imaging, 24(3), 141–141. https://doi.org/10.13104/imri.2020.24.3.141

Marth, T., Froehlich, J. M., Nanz, D., & Sutter, R. (2025). Gadolinium concentration dependent signal enhancement profiles using routine clinical sequences with gadopiclenol, gadoterate, gadobutrol, and gadoxetate at 1.5, 3 and 7 Tesla. European Journal of Radiology, 191, 112322. https://doi.org/10.1016/j.ejrad.2025.112322

McIlvain, G., Ganji, E., Cooper, C., Killian, M. L., Ogunnaike, B. A., & Johnson, C. L. (2019). Reliable preparation of agarose phantoms for use in quantitative magnetic resonance elastography. Journal of the Mechanical Behavior of Biomedical Materials, 97, 65–73. https://doi.org/10.1016/j.jmbbm.2019.05.001

Mitchell, M. D., Kundel, H. L., Axel, L., & Joseph, P. M. (1986). Agarose as a tissue equivalent phantom material for NMR imaging. Magnetic Resonance Imaging, 4(3), 263–266. https://doi.org/10.1016/0730-725X(86)91068-4

Okada, H., Koori, N., Shimizu, H., Yamamoto, S., Komatsuzaki, T., Fuse, H., Sasaki, K., Miyakawa, S., Yasue, K., & Takahashi, M. (2025). Development of estimation method for T1 and T2 values using the relaxivity of contrast agent and coagulant for a magnetic resonance imaging phantom. Radiological Physics and Technology, 18(2), 469–476. https://doi.org/10.1007/s12194-025-00900-7

Pachowsky, M. L., Trattnig, S., Apprich, S., Mauerer, A., Zbyn, S., & Welsch, G. H. (2013). Impact of different coils on biochemical T2 and T2* relaxation time mapping of articular patella cartilage. Skeletal Radiology, 42(11), 1565–1572. https://doi.org/10.1007/s00256-013-1699-z

Razzaq, S., Haririsanati, L., Eyre, K., Garg, R., Chetrit, M., & Friedrich, M. G. (2024). Inter-scanner comparability of Z-scores for native myocardial T1 and T2 mapping. Journal of Cardiovascular Magnetic Resonance, 26(1), 100004–100004. https://doi.org/10.1016/J.JOCMR.2023.100004

Ruello, G., & Lattanzi, R. (2022). A Physical Framework to Interpret the Effects of High Permittivity Materials on Radiofrequency Coil Performance in Magnetic Resonance Imaging. IEEE Transactions on Biomedical Engineering, 69(11), 3278–3287. https://doi.org/10.1109/TBME.2022.3165763

Shen, Y., Goerner, F. L., Snyder, C., Morelli, J. N., Hao, D., Hu, D., Li, X., & Runge, V. M. (2015). T1 Relaxivities of Gadolinium-Based Magnetic Resonance Contrast Agents in Human Whole Blood at 1.5, 3, and 7 T: Investigative Radiology, 50(5), 330–338. https://doi.org/10.1097/RLI.0000000000000132

Statton, B. K., Smith, J., Finnegan, M. E., Koerzdoerfer, G., Quest, R. A., & Grech‐Sollars, M. (2022). Temperature dependence, accuracy, and repeatability of T1 and T2 relaxation times for the ISMRM/NIST system phantom measured using MR fingerprinting. Magnetic Resonance in Medicine, 87(3), 1446–1460. https://doi.org/10.1002/mrm.29065

Szomolanyi, P., Rohrer, M., Frenzel, T., Noebauer-Huhmann, I. M., Jost, G., Endrikat, J., Trattnig, S., & Pietsch, H. (2019). Comparison of the Relaxivities of Macrocyclic Gadolinium-Based Contrast Agents in Human Plasma at 1.5, 3, and 7 T, and Blood at 3 T. Investigative Radiology, 54(9), 559–564. https://doi.org/10.1097/RLI.0000000000000577

Taylor, A., Salerno, M., Dharmakumar, R., & Jerosch‐Herold, M. (2016). T1 Mapping: Basic Techniques and Clinical Applications. JACC. Cardiovascular Imaging, 9(1), 67–81. https://doi.org/10.1016/j.jcmg.2015.11.005

Vaidya, M. V., Deniz, C. M., Collins, C. M., Sodickson, D. K., & Lattanzi, R. (2018). Manipulating transmit and receive sensitivities of radiofrequency surface coils using shielded and unshielded high-permittivity materials. Magnetic Resonance Materials in Physics, Biology and Medicine, 31(3), 355–366. https://doi.org/10.1007/s10334-017-0657-5

Varma, G., Girard, O. M., Mchinda, S., Prevost, V. H., Grant, A. K., Duhamel, G., & Alsop, D. C. (2018). Low duty-cycle pulsed irradiation reduces magnetization transfer and increases the inhomogeneous magnetization transfer effect. Journal of Magnetic Resonance, 296, 60–71. https://doi.org/10.1016/j.jmr.2018.08.004

Vassiliou, V. S., Heng, E. L., Gatehouse, P. D., Donovan, J., Raphael, C. E., Giri, S., Babu-Narayan, S. V., Gatzoulis, M. A., Pennell, D. J., Prasad, S. K., & Firmin, D. N. (2016). Magnetic resonance imaging phantoms for quality-control of myocardial T1 and ECV mapping: Specific formulation, long-term stability and variation with heart rate and temperature. Journal of Cardiovascular Magnetic Resonance, 18(1), 1–12. https://doi.org/10.1186/s12968-016-0275-9

Yongabi, D., Mertens, N., & Peeters, R. (2021). Reproducibility of T1 relaxation times in diagnostic MRI: A phantom study. Physics in Medicine, 12. https://doi.org/10.1016/j.phmed.2021.100038

Yusuff, H., Chatelin, S., & Dillenseger, J.-P. (2024). Narrative review of tissue-mimicking materials for MRI phantoms: Composition, fabrication, and relaxation properties. Radiography, 30(6), 1655–1668. https://doi.org/10.1016/j.radi.2024.09.063

Zhang, Q., Werys, K., Popescu, I. A., Biasiolli, L., Ntusi, N. A. B., Desai, M., Zimmerman, S. L., Shah, D. J., Autry, K., Kim, B., Kim, H. W., Jenista, E. R., Huber, S., White, J. A., McCann, G. P., Mohiddin, S. A., Boubertakh, R., Chiribiri, A., Newby, D., … Piechnik, S. K. (2021). Quality assurance of quantitative cardiac T1-mapping in multicenter clinical trials – A T1 phantom program from the hypertrophic cardiomyopathy registry (HCMR) study. International Journal of Cardiology, 330, 251–258. https://doi.org/10.1016/j.ijcard.2021.01.026

Authors

Maheran Che Ha’
maher@moh.gov.my (Primary Contact)
Izdihar Kamal
Mohd Mustafa Awang Kechik
Khairil Amir Sayuti
Yusri Mohammed
Muhammad Khalis Abdul Karim
Aris Doyan
Ha’, M. C., Kamal, I., Kechik, M. M. A., Sayuti, K. A., Mohammed, Y., Karim, M. K. A., & Doyan, A. (2026). A Comparative Study of Gadobutrol Relaxivity at 3 Tesla for Sustainable Contrast Management and Standardized Phantom Calibration . AMPLITUDO : Journal of Science and Technology Innovation, 5(1), 117–129. https://doi.org/10.56566/amplitudo.v5i1.527
Copyright and license info is not available

Article Details

Most read articles by the same author(s)

<< < 1 2