A Hybrid Ensemble Framework for Probabilistic Earthquake Forecasting in Northern California in Support of SDG 11: Sustainable and Resilient Cities

Madlazim (1), Baba Musta (2), Aris Doyan (3), Adi Susilo (4), Khaista Rehman (5)
(1) Universitas Negeri Surabaya, Indonesia,
(2) University of Malaysia Sabah, Malaysia,
(3) University of Mataram, Indonesia,
(4) Brawijaya University, Indonesia,
(5) University of Peshawar, Pakistan

Abstract

Forecasting earthquakes is still one of the most difficult problems in geophysics, mainly because seismic activity is irregular and often influenced by many factors that interact in complex ways. In this study, we develop a leakage-controlled hybrid ensemble model that combines CatBoost, LightGBM, XGBoost, and Gradient Boosting to predict five earthquake parameters: magnitude, depth, latitude, longitude, and a scaled inter-event interval in Northern California. These models were trained using USGS earthquake data ranging from 1900 to 2025 (M ≥ 4.0), with a process designed to prevent time leakage through strict time separation, a moving window feature, and prospective validation. Overall, the hybrid models produced consistently low MAE and RMSE values ​​and very high R² values ​​(above 0.99) for all target variables. While the estimates performed impressively, the results should be interpreted in a probabilistic context, with recognition of the inherent uncertainty of seismic processes. The framework proposed here provides a clear and replicable approach that can support the development of systems for more reliable short-term earthquake forecasting

Full text article

Generated from XML file

References

Abri, R., & Artuner, H. (2022). LSTM-based deep learning methods for prediction of earthquakes using ionospheric data. Gazi University Journal of Science, 35(4), 1417–1431. https://doi.org/10.35378/gujs.950387

Ahn, J. M., Kim, J., & Kim, K. (2023). Ensemble machine learning of gradient boosting (XGBoost, LightGBM, CatBoost) and attention-based CNN-LSTM for harmful algal blooms forecasting. Toxins, 15(10), 608. https://doi.org/10.3390/toxins15100608

Asim, K. M., Moustafa, S. S., Niaz, I. A., Elawadi, E. A., Iqbal, T., & Martínez-Álvarez, F. (2020). Seismicity analysis and machine learning models for short-term low magnitude seismic activity predictions in Cyprus. Soil Dynamics and Earthquake Engineering, 130, 105932. https://doi.org/10.1016/j.soildyn.2019.105932

Båth, M. (1965). Lateral inhomogeneities of the upper mantle. Tectonophysics, 2(6), 483–514. https://doi.org/10.1016/0040-1951(65)90003-X

Chitkeshwar, A. (2024). The role of machine learning in earthquake seismology: A review. Archives of Computational Methods in Engineering, 31(7), 3963–3975. https://doi.org/10.1007/s11831-024-10099-2

Dotse, S. Q., Larbi, I., Limantol, A. M., & De Silva, L. C. (2024). A review of the application of hybrid machine learning models to improve rainfall prediction. Modeling Earth Systems and Environment, 10(1), 19–44. https://doi.org/10.1007/s40808-023-01835-x

Geller, R. J., Jackson, D. D., Kagan, Y. Y., & Mulargia, F. (1997). Earthquakes cannot be predicted. Science, 275(5306), 1616–1617. https://doi.org/10.1126/science.275.5306.1616

Kagan, Y. Y. (1997). Seismic moment-frequency relation for shallow earthquakes: Regional comparison. Journal of Geophysical Research: Solid Earth, 102(B2), 2835–2852. https://doi.org/10.1029/96JB03386

Khalid, H., Khan, A., Zahid Khan, M., Mehmood, G., & Shuaib Qureshi, M. (2023). Machine learning hybrid model for the prediction of chronic kidney disease. Computational Intelligence and Neuroscience, 2023(1), 9266889. https://doi.org/10.1155/2023/9266889

Kong, Q., Trugman, D. T., Ross, Z. E., Bianco, M. J., Meade, B. J., & Gerstoft, P. (2019). Machine learning in seismology: Turning data into insights. Seismological Research Letters, 90(1), 3–14. https://doi.org/10.1785/0220180259

Kubo, H., Naoi, M., & Kano, M. (2024). Recent advances in earthquake seismology using machine learning. Earth, Planets and Space, 76, 36. https://doi.org/10.1186/s40623-024-01982-0

Marzocchi, W., & Taroni, M. (2014). Some thoughts on declustering in probabilistic seismic-hazard analysis. Bulletin of the Seismological Society of America, 104(4), 1838–1845. https://doi.org/10.1785/0120130300

Mignan, A., Werner, M. J., Wiemer, S., Chen, C.-C., & Wu, Y.-M. (2011). Bayesian estimation of the spatially varying completeness magnitude of earthquake catalogs. Bulletin of the Seismological Society of America, 101(3), 1371–1385. https://doi.org/10.1785/0120100223

Mousavi, S. M., & Beroza, G. C. (2022). Deep-learning seismology. Science, 377(6607), eabm4470. https://doi.org/10.1126/science.abm4470

Mousavi, S. M., & Beroza, G. C. (2023). Machine learning in earthquake seismology. Annual Review of Earth and Planetary Sciences, 51, 105–129. https://doi.org/10.1146/annurev-earth-071822-100323

Renuka, G. B., Lokesh, C., Tharaknath, P., Kumar, M. M., & Reddy, M. S. C. (2024). Earthquake forecasting with ML: A comprehensive approach. In Computer Science Engineering (pp. 393–400). CRC Press. https://doi.org/10.1201/9781032711157-45

Rhoades, D. A., & Gerstenberger, M. C. (2009). Mixture models for improved short-term earthquake forecasting. Bulletin of the Seismological Society of America, 99(2A), 636–646. https://doi.org/10.1785/0120080063

Sadhukhan, B., Chakraborty, S., Mukherjee, S., & Samanta, R. K. (2023). Climatic and seismic data-driven deep learning model for earthquake magnitude prediction. Frontiers in Earth Science, 11, 1082832. https://doi.org/10.3389/feart.2023.1082832

Schorlemmer, D., Werner, M. J., Marzocchi, W., Jordan, T. H., Ogata, Y., Jackson, D. D., & Zhuang, J. (2018). The collaboratory for the study of earthquake predictability: Achievements and priorities. Seismological Research Letters, 89(4), 1305–1313. https://doi.org/10.1785/0220180053

Taroni, M., Selva, J., & Zhuang, J. (2021). Estimation of the tapered Gutenberg-Richter distribution parameters for catalogs with variable completeness: An application to the Atlantic ridge seismicity. Applied Sciences, 11(24), 12166. https://doi.org/10.3390/app112412166

Thaler, D., Elezaj, L., Bamer, F., & Markert, B. (2022). Training data selection for machine learning-enhanced Monte Carlo simulations in structural dynamics. Applied Sciences, 12(2), 581. https://doi.org/10.3390/app12020581

U.S. Geological Survey. (2025). USGS earthquake catalog. Retrieved from https://earthquake.usgs.gov

Yousefzadeh, M., Hosseini, S. A., & Farnaghi, M. (2021). Spatiotemporally explicit earthquake prediction using deep neural network. Soil Dynamics and Earthquake Engineering, 144, 106663. https://doi.org/10.1016/j.soildyn.2021.106663

Zhao, Y., & Gorse, D. (2024). Earthquake prediction from seismic indicators using tree-based ensemble learning. Natural Hazards, 120, 2283–2309. https://doi.org/10.1007/s11069-023-06221-5

Zhou, Z., Zhao, L., Lin, A., Qin, W., Lu, Y., Li, J., & He, L. (2020). Exploring the potential of deep factorization machine and various gradient boosting models in modeling daily reference evapotranspiration in China. Arabian Journal of Geosciences, 13(24), 1287. https://doi.org/10.1007/s12517-020-06293-8

Authors

Madlazim
madlazim@unesa.ac.id (Primary Contact)
Baba Musta
Aris Doyan
Adi Susilo
Khaista Rehman
Madlazim, M., Musta, B., Doyan, A., Susilo, A., & Rehman, K. (2026). A Hybrid Ensemble Framework for Probabilistic Earthquake Forecasting in Northern California in Support of SDG 11: Sustainable and Resilient Cities . AMPLITUDO : Journal of Science and Technology Innovation, 5(1), 28–35. https://doi.org/10.56566/amplitudo.v5i1.496
Copyright and license info is not available

Article Details

Most read articles by the same author(s)

<< < 1 2