Matlab Program for Sharpening Image due to Lenses Blurring Effect Simulation with Lucy Richardson Deconvolution
Abstract
This research was conducted to simulate digital image sharpening using the Lusi Richardson deconvolution method. Sharpening was then performed by Lusi richardson deconvolution of the pint spread function of the lens effect. This point spread function is modeled mathematically with a mathematical function approach. The results of the convolution between the Digital Image from a photo of an object are then convolved with the point spread function so as to produce a blurry image. The blurry image is then re-sharpened by deconvolution using the Lucy Richardson convolution method. The results of this deconvolution are then compared with the image of an object photo of reference and then the difference is calculated. The slight difference between the deconvolution result image and the original object photo image indicates that the program is running well. Peak Signal to Noise Ratio (PSNR) Is used to determine image sharpening recovery. The optimum sharpening recovery of deconvolution iteration is obtained in the maximum PSNR value
Full text article
References
Apriliyani, D. E. (2017). Analisis Kinerja Metode Lucy-Richardson Dan Blind Deconvolution. Jurnal Ilmiah Teknologi Dan Rekayasa, 22(1). http://www.ejournal.gunadarma.ac.id/index.php/tekno/article/view/1609
Bahat, Y., Efrat, N., & Irani, M. (2017). Non-uniform blind deblurring by reblurring. Proceedings of the IEEE International Conference on Computer Vision, 3286–3294. https://openaccess.thecvf.com/content_iccv_2017/html/Bahat_Non-Uniform_Blind_Deblurring_ICCV_2017_paper.html DOI: https://doi.org/10.1109/ICCV.2017.356
Brylka, R., Schwanecke, U., & Bierwirth, B. (2020). Camera based barcode localization and decoding in real-world applications. 2020 International Conference on Omni-Layer Intelligent Systems (COINS), 1–8. https://ieeexplore.ieee.org/abstract/document/9191416/ DOI: https://doi.org/10.1109/COINS49042.2020.9191416
Fiori, S. (2004). Fast fixed-point neural blind-deconvolution algorithm. IEEE Transactions on Neural Networks, 15(2), 455–459. https://ieeexplore.ieee.org/abstract/document/1288248 DOI: https://doi.org/10.1109/TNN.2004.824258
Lai, W.-S., Huang, J.-B., Hu, Z., Ahuja, N., & Yang, M.-H. (2016). A comparative study for single image blind deblurring. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1701–1709. http://openaccess.thecvf.com/content_cvpr_2016/html/Lai_A_Comparative_Study_CVPR_2016_paper.html DOI: https://doi.org/10.1109/CVPR.2016.188
Levin, A., Weiss, Y., Durand, F., & Freeman, W. T. (2011). Understanding blind deconvolution algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(12), 2354–2367. https://ieeexplore.ieee.org/abstract/document/5963691 DOI: https://doi.org/10.1109/TPAMI.2011.148
Lou, Y., Esser, E., Zhao, H., & Xin, J. (2014). Partially blind deblurring of barcode from out-of-focus blur. SIAM Journal on Imaging Sciences, 7(2), 740–760. https://doi.org/https://epubs.siam.org/doi/abs/10.1137/130931254 DOI: https://doi.org/10.1137/130931254
Purba, R. B. (2020). Implementasi Metode Fourier Phase Only Synthesis Dan Blind Deconvolution Untuk Penajaman Citra. Pelita Informatika: Informasi Dan Informatika, 8(4), 461–466. http://ejurnal.stmik-budidarma.ac.id/index.php/pelita/article/view/2444
Putra, D. (2010). Pengolahan citra digital. Yogyakarta: Penerbit Andi.
Srinivasan, P. P., Ng, R., & Ramamoorthi, R. (2017). Light field blind motion deblurring. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3958–3966. https://openaccess.thecvf.com/content_cvpr_2017/html/Srinivasan_Light_Field_Blind_CVPR_2017_paper.html DOI: https://doi.org/10.1109/CVPR.2017.253
Sundani, D., Widiastuti, S., & DA, R. (2014). Aplikasi Penajaman Citra (Image Sharpening Berdasarkan Prinsip Kuantum. Seminar Nasional Aplikasi Sains & Teknologi, 201–206. https://scholar.google.com/scholar?hl=id&as_sdt=0%2C5&q=Widiastuti%2C+S.%2C+Agushinta%2C+D.%2C+Sundani%2C+R.D.+2014+APLIKASI+PENAJAMAN+CITRA+%28IMAGE+SHARPENING%29+BERDASARKAN+PRINSIP+KUANTUM%2C%22+Prosiding+Seminar+Nasional+Aplikasi+Sains+%26+Teknologi+&btnG=
Sutoyo, T. (2010). Teori Pengolahan Citra Digital (B. R. W. ed. (ed.); 1st ed.). C.V Andi OFFSET.
Vorontsov, S. V, & Jefferies, S. M. (2017). A new approach to blind deconvolution of astronomical images. Inverse Problems, 33(5), 55004. https://doi.org/10.1088/1361-6420/aa5e16 DOI: https://doi.org/10.1088/1361-6420/aa5e16
Zhang, H., Wipf, D., & Zhang, Y. (2013). Multi-image blind deblurring using a coupled adaptive sparse prior. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1051–1058. https://openaccess.thecvf.com/content_cvpr_2013/html/Zhang_Multi-image_Blind_Deblurring_2013_CVPR_paper.html DOI: https://doi.org/10.1109/CVPR.2013.140
Authors
Copyright (c) 2023 Fathony Arroisy Muhammad, Gibran Satya Nugraha, Ramaditia Dwiyansaputra
This work is licensed under a Creative Commons Attribution 4.0 International License.