Matlab Program for Sharpening Image due to Lenses Blurring Effect Simulation with Lucy Richardson Deconvolution

Fathony Arroisy Muhammad (1), Gibran Satya Nugraha (2), Ramaditia Dwiyansaputra (3)
(1) Universitas Mataram, Indonesia,
(2) Universitas Mataram, Indonesia,
(3) Universitas Mataram, Indonesia

Abstract

This research was conducted to simulate digital image sharpening using the Lusi Richardson deconvolution method. Sharpening was then performed by Lusi richardson deconvolution of the pint spread function of the lens effect. This point spread function is modeled mathematically with a mathematical function approach. The results of the convolution between the Digital Image from a photo of an object are then convolved with the point spread function so as to produce a blurry image. The blurry image is then re-sharpened by deconvolution using the Lucy Richardson convolution method. The results of this deconvolution are then compared with the image of an object photo of reference and then the difference is calculated. The slight difference between the deconvolution result image and the original object photo image indicates that the program is running well. Peak Signal to Noise Ratio (PSNR) Is used to determine image sharpening recovery. The optimum sharpening recovery of deconvolution iteration is obtained in the maximum PSNR value

Full text article

Generated from XML file

References

Apriliyani, D. E. (2017). Analisis Kinerja Metode Lucy-Richardson Dan Blind Deconvolution. Jurnal Ilmiah Teknologi Dan Rekayasa, 22(1). http://www.ejournal.gunadarma.ac.id/index.php/tekno/article/view/1609

Bahat, Y., Efrat, N., & Irani, M. (2017). Non-uniform blind deblurring by reblurring. Proceedings of the IEEE International Conference on Computer Vision, 3286–3294. https://openaccess.thecvf.com/content_iccv_2017/html/Bahat_Non-Uniform_Blind_Deblurring_ICCV_2017_paper.html DOI: https://doi.org/10.1109/ICCV.2017.356

Brylka, R., Schwanecke, U., & Bierwirth, B. (2020). Camera based barcode localization and decoding in real-world applications. 2020 International Conference on Omni-Layer Intelligent Systems (COINS), 1–8. https://ieeexplore.ieee.org/abstract/document/9191416/ DOI: https://doi.org/10.1109/COINS49042.2020.9191416

Fiori, S. (2004). Fast fixed-point neural blind-deconvolution algorithm. IEEE Transactions on Neural Networks, 15(2), 455–459. https://ieeexplore.ieee.org/abstract/document/1288248 DOI: https://doi.org/10.1109/TNN.2004.824258

Lai, W.-S., Huang, J.-B., Hu, Z., Ahuja, N., & Yang, M.-H. (2016). A comparative study for single image blind deblurring. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1701–1709. http://openaccess.thecvf.com/content_cvpr_2016/html/Lai_A_Comparative_Study_CVPR_2016_paper.html DOI: https://doi.org/10.1109/CVPR.2016.188

Levin, A., Weiss, Y., Durand, F., & Freeman, W. T. (2011). Understanding blind deconvolution algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(12), 2354–2367. https://ieeexplore.ieee.org/abstract/document/5963691 DOI: https://doi.org/10.1109/TPAMI.2011.148

Lou, Y., Esser, E., Zhao, H., & Xin, J. (2014). Partially blind deblurring of barcode from out-of-focus blur. SIAM Journal on Imaging Sciences, 7(2), 740–760. https://doi.org/https://epubs.siam.org/doi/abs/10.1137/130931254 DOI: https://doi.org/10.1137/130931254

Purba, R. B. (2020). Implementasi Metode Fourier Phase Only Synthesis Dan Blind Deconvolution Untuk Penajaman Citra. Pelita Informatika: Informasi Dan Informatika, 8(4), 461–466. http://ejurnal.stmik-budidarma.ac.id/index.php/pelita/article/view/2444

Putra, D. (2010). Pengolahan citra digital. Yogyakarta: Penerbit Andi.

Srinivasan, P. P., Ng, R., & Ramamoorthi, R. (2017). Light field blind motion deblurring. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3958–3966. https://openaccess.thecvf.com/content_cvpr_2017/html/Srinivasan_Light_Field_Blind_CVPR_2017_paper.html DOI: https://doi.org/10.1109/CVPR.2017.253

Sundani, D., Widiastuti, S., & DA, R. (2014). Aplikasi Penajaman Citra (Image Sharpening Berdasarkan Prinsip Kuantum. Seminar Nasional Aplikasi Sains & Teknologi, 201–206. https://scholar.google.com/scholar?hl=id&as_sdt=0%2C5&q=Widiastuti%2C+S.%2C+Agushinta%2C+D.%2C+Sundani%2C+R.D.+2014+APLIKASI+PENAJAMAN+CITRA+%28IMAGE+SHARPENING%29+BERDASARKAN+PRINSIP+KUANTUM%2C%22+Prosiding+Seminar+Nasional+Aplikasi+Sains+%26+Teknologi+&btnG=

Sutoyo, T. (2010). Teori Pengolahan Citra Digital (B. R. W. ed. (ed.); 1st ed.). C.V Andi OFFSET.

Vorontsov, S. V, & Jefferies, S. M. (2017). A new approach to blind deconvolution of astronomical images. Inverse Problems, 33(5), 55004. https://doi.org/10.1088/1361-6420/aa5e16 DOI: https://doi.org/10.1088/1361-6420/aa5e16

Zhang, H., Wipf, D., & Zhang, Y. (2013). Multi-image blind deblurring using a coupled adaptive sparse prior. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1051–1058. https://openaccess.thecvf.com/content_cvpr_2013/html/Zhang_Multi-image_Blind_Deblurring_2013_CVPR_paper.html DOI: https://doi.org/10.1109/CVPR.2013.140

Authors

Fathony Arroisy Muhammad
[email protected] (Primary Contact)
Gibran Satya Nugraha
Ramaditia Dwiyansaputra
Muhammad, F. A., Nugraha, G. S., & Dwiyansaputra, R. (2023). Matlab Program for Sharpening Image due to Lenses Blurring Effect Simulation with Lucy Richardson Deconvolution. AMPLITUDO : Journal of Science and Technology Innovation, 2(1), 38–43. https://doi.org/10.56566/amplitudo.v2i1.57

Article Details