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Abstract: Microalgae are highly valuable across various industries due to their rich 
nutritional content and positive environmental impact. In the fast-growing field of 
aquaculture aimed at meeting global food needs, integrating microalgae technology can 
be highly beneficial. This literature review explores the diverse roles of microalgae in 
enhancing aquaculture, focusing on their nutritional benefits, water quality management, 
larviculture, Integrated Multi-Trophic Aquaculture (IMTA) systems, and bioremediation. 
Microalgae are excellent natural nutrient sources, offering high protein content, omega-3 
fatty acids, vitamins, minerals, and antioxidants, vital for aquatic organism growth and 
health. Their contributions to water quality maintenance, larval stage nutrition, and waste 
nutrient uptake are critical. Additionally, microalgae play a pivotal role in IMTA by acting 
as primary producers and minimizing environmental impact. The review emphasizes 
challenges like economic constraints and strain optimization, underscoring the need for 
further research to fully leverage microalgae's potential in aquaculture, promising 
advancements to revolutionize the industry and enhance global food security. 
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Introduction  

 
Microalgae, small photosynthetic 

microorganisms, have garnered significant attention 
across industries due to their versatile applications and 
diverse bioactive compounds (Ahmed & Azra, 2022a). 

They find utility in aquaculture feed, biofuel production, 
food additives, and pharmaceuticals (von Alvensleben 
et al., 2016a). These applications extend to biofuels, 
cosmetics, and bioremediation (Balasubramaniam et al., 
2021). Cultivation of microalgae on a large scale with a 
rapid growth rate positions them as a sustainable 
biomass source for numerous industries (Soto-Sánchez 
et al., 2023).  Phytosterols, a vital bioactive compound 
found in microalgae, have been incorporated as food 

additives in various products like spreads, dairy items, 
and salad dressings (X. Luo et al., 2015). Microalgae are 
also rich in polyunsaturated fatty acids (PUFAs), 
acknowledged for their health-promoting properties 
(Soto-Sánchez et al., 2023). However, challenges persist 
in commercial microalgae production and bioactive 
compound extraction, necessitating research for optimal 
yield and genetic enhancements (Kumar et al., 2020). 

Shifting to aquaculture, microalgae present a 
sustainable solution for wastewater treatment, nutrient 
assimilation, and pollutant reduction (Li et al., 2021). 
Moreover, they serve as a nutritious and sustainable 
feed source, enhancing the health and performance of 
aquatic organisms (L. Yang et al., 2021). The 
antimicrobial properties of microalgae offer a 
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sustainable alternative to conventional antibiotics in 
aquaculture, aiding in disease prevention (Falaise et al., 
2016). Additionally, microalgae exhibit promise in the 
development of immunostimulants and vaccines, 
advancing disease resistance in aquaculture (K. Ma et al., 
2020). 

However, challenges such as optimization of 
cultivation systems, suitable species selection, and cost-

effective harvesting technologies require further 
research and development for seamless integration of 
microalgae technology into aquaculture practices (Li et 
al., 2021). This literature review aims to explore the 
potential of microalgae in enhancing aquaculture 
efficiency and sustainability, addressing challenges and 
proposing avenues for further research (Falaise et al., 
2016). It will delve into microalgae-bacteria interactions, 
sustainable feed production, wastewater treatment, and 
overall water quality enhancement in aquaculture. 
Through a comprehensive examination of existing 
literature, the review seeks to shed light on the valuable 
role of microalgae in improving aquaculture practices 
and promoting sustainability. 

The objective of this literature review is to 
explore the role of microalgae in improving aquaculture 
efficiency and sustainability. (Falaise et al., 2016). 
Microalgae-bacteria interactions have also been 
investigated for their impacts on the productivity, 
efficiency, and sustainability of aquaculture (Natrah et 
al., 2014). Additionally, the use of microalgae as a 
sustainable feed source in aquaculture has been studied, 
with findings suggesting that microalgae can be safely 
used as growth and immune stimulants for aquatic 
animals (Pantami et al., 2020). Furthermore, microalgae 
technology has been explored for wastewater treatment 
in aquaculture, biomass production, and water quality 
control (Han et al., 2019). The review will also discuss 
the challenges and potential solutions associated with 
the application of microalgae in aquaculture, such as 
biomass harvesting technologies and the need for 
further research and development (Li et al., 2021; K. Ma 
et al., 2020; L. Yang et al., 2021). By examining the 
existing literature, this review aims to provide a 
comprehensive understanding of the role of microalgae 
in improving aquaculture practices and promoting 
sustainability. 

 

Method 
 

In this study, a literature review methodology is 
utilized, concentrating on a range of international 
journals investigating microalgae technology in 
aquaculture. The research delves into the effects of 
microalgae on aquatic organisms and their potential in 
developing a sustainable and nutritionally balanced 
feed. Additionally, the study examines how microalgae 

can aid in nutrient uptake from wastewater generated by 
fish in aquaculture and evaluates its impact as a feed for 
aquatic species. 

 

Result and Discussion 
 

Microalgae as a natural source of essential nutrients for 
aquatic organisms 

Microalgae, a natural nutrient source for aquatic 
organisms, play a vital role in aquaculture due to their 
rich content of essential proteins, omega-3 fatty acids, 
valuable lipids, vitamins, minerals, and antioxidants 
(Yaakob et al., 2014). These nutrients are fundamental 
for the growth, development, and overall well-being of 
aquatic life. Proteins are crucial for growth, and 
microalgae offer a plentiful supply of high-quality 
proteins, containing a diverse range of essential amino 
acids necessary for protein synthesis and physiological 
functions (Chen et al., 2022). Omega-3 fatty acids like 
eicosapentaenoic acid and docosahexaenoic acid are 
essential for aquatic organisms' growth, reproduction, 
and overall health, with microalgae being a primary 
source in aquatic ecosystems (Fang et al., 2022). These 
omega-3 fatty acids can be enhanced in aquaculture feed 
by incorporating microalgae, improving the nutritional 

value for farmed species. 
Additionally, microalgae contain other valuable 

lipids, such as monounsaturated and polyunsaturated 
fatty acids, critical for energy storage, membrane 
structure, and various physiological processes in aquatic 
organisms (Yaakob et al., 2014). The nutritional 
composition of microalgae can be optimized through 
cultivation strategies, offering tailored nutrient profiles 
for different aquaculture species (Chen et al., 2022). 
Cultivating microalgae using sustainable methods 
underscores their potential as an eco-friendly solution to 
meet the nutritional needs of aquatic organisms in 
aquaculture, further promoting sustainability (Chacón-
Lee & González-Mariño, 2010; Kumar et al., 2020). In 
essence, microalgae represent a natural and crucial 
nutrient source for aquatic organisms, significantly 
enhancing aquaculture's sustainability and overall 
success. 
 

Importance of balanced and sustainable feed in 
aquaculture 

Balanced and sustainable feed is vital for 
aquaculture growth, health, and environmental 
sustainability (Gatlin et al., 2007). It optimizes growth, 
development, and overall aquatic organism health. 
Microalgae, a natural nutrient source, contributes 
significantly to balanced nutrition in aquaculture, rich in 
essential proteins, omega-3 fatty acids, lipids, vitamins, 
minerals, and antioxidants. These nutrients are crucial 
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for metabolic processes, immune function, and overall 
well-being. 

Utilizing plant-based and alternative protein 
sources, including microalgae, reduces reliance on finite 
resources, enhances feed efficiency, and minimizes 
environmental impacts. Incorporating these ingredients 
promotes sustainability, reducing pressure on wild fish 
stocks. Enhancing feed efficiency through dietary 

interventions and understanding gut microbiome 
interactions optimize nutrient utilization and reduce 
waste, contributing to economic viability. Balanced and 
sustainable feed ultimately supports aquaculture's 
profitability and long-term sustainability in an eco-
friendly manner  (Hancz, 2020; Madkour et al., 2023; 
Röthig et al., 2023; Tarnecki et al., 2017). 
 

The positive effects of microalgae-based feeds on 
growth, survival, and overall health of aquatic species 

Studies consistently demonstrate the favorable 
impact of microalgae-based feeds on aquatic species, 
enhancing growth, survival, immune response, and 
nutritional quality. Microalgae exhibit potential as a 
sustainable and nutritious feed source in aquaculture. 
Notably, research by Kiron et al. (2016) revealed that 
microalgae can replace fishmeal in aquafeeds without 
compromising growth and survival in Atlantic salmon 
(Kiron et al., 2016). Another study by Hassan et al. (2022) 
underscored the influence of microalgae diets on hard 
clam juveniles, affecting growth and survival positively 
(Hassan et al., 2023). Furthermore, microalgae-based 
feeds enhance immune response and disease resistance, 
attributed to their bioactive compounds (Hai, 2015). 
Microalgae, rich in omega-3 fatty acids, enhance the 
nutritional quality of aquatic organisms, offering a 
healthier product for consumers (Kiron et al., 2016). 
These findings emphasize the multifaceted benefits of 
integrating microalgae into aquafeeds, from growth and 
immunity to improved nutritional value, reinforcing 
their potential in sustainable aquaculture practices. 
 

Water Quality Management and Microalgae 
Microalgae play a critical role in managing 

water quality, serving as bioindicators for water body 
assessment and control. Their capacity to absorb and 
convert nutrients into biomass aids in environmental 
purification, wastewater treatment, and maintaining 
water quality across aquatic ecosystems. Effective water 
quality management is vital for environmental 
sustainability, particularly in aquatic systems. 
Microalgae, acting as primary producers and 
bioindicators, are key in evaluating and controlling 
water quality (Japa et al., 2022). Losses in phytoplankton 
populations adversely affect fish production, 
emphasizing the importance of a thriving microalgal 
community. 

Microalgae are also instrumental in maintaining 
water quality in lakes, rivers, and coastal areas, aiding in 
nutrient regulation and averting eutrophication (Wang 
et al., 2022). Additionally, microalgae exhibit promise in 
wastewater treatment, especially for organic-rich 
wastewater like brewery effluents (Amenorfenyo et al., 
2019). Their ability to absorb nutrients and convert them 
into biomass makes them an eco-friendly and cost-

effective solution for wastewater treatment. The 
harvested microalgal biomass has various valuable 
applications, including animal feed, biofertilizer, and 
biodiesel production. Overall, microalgae-based 
wastewater treatment presents a sustainable, 
economically viable approach for addressing 
wastewater challenges, emphasizing the environmental 
benefits and cost-effectiveness of this method.  
 

Role of microalgae in maintaining water quality 
parameters  

Effective water quality management is vital for 
sustaining aquatic ecosystems. Microalgae, with their 
nutrient uptake and bioremediation capabilities, 
significantly contribute to this aspect. Studies 
demonstrate their ability to efficiently remove excess 
nutrients like nitrogen and phosphorus, preventing 
eutrophication and maintaining water quality (von 
Alvensleben et al., 2016b). Microalgae store surplus 
nutrients as polyphosphate, a reserve source utilized 
when external nutrients are scarce, aiding in balanced 
nutrient levels in aquatic environments. 

Furthermore, microalgae enhance water quality 
by producing oxygen and sequestering carbon dioxide 
through photosynthesis (Liber et al., 2020). Oxygen 
release supports aquatic organism survival and 
ecosystem health. Concurrently, their carbon dioxide 
absorption contributes to carbon capture, potentially 
mitigating climate change. Microalgae-based 
wastewater treatment is also promising, effectively 
removing organic pollutants and heavy metals, 
remediating contaminated water (Fernandes et al., 
2022). The resulting microalgal biomass holds value for 
biofuel production or nutrient-rich feed in aquaculture, 
presenting an eco-friendly solution for wastewater 

treatment and valuable byproduct creation. 
In conclusion, microalgae's multifaceted 

contributions, from nutrient regulation to 
bioremediation and carbon sequestration, underscore 
their critical role in water quality management and 
environmental sustainability. Further research and 
development are imperative to optimize their 
application in water treatment systems, addressing 
global water challenges effectively. 
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Enhancing Water Quality and Waste Management: 
Synergizing Biofloc Systems with Microalgae 
Cultivation 
 Microalgae cultivation within biofloc systems 
significantly contributes to nutrient uptake, 
bioremediation, oxygen production, and carbon dioxide 
removal. Microalgae efficiently absorb and assimilate 
nutrients, enhancing nutrient cycling and stabilizing the 
aquaculture environment (Chen et al., 2022). 
Furthermore, they provide a continuous source of live 
food, promoting the growth, survival, and health of 
cultured organisms (Emerenciano et al., 2012). 

Beyond aquaculture, microalgae play a pivotal 
role in water quality and waste management. Studies 
showcase their ability to thrive in various environmental 
conditions while effectively utilizing carbon dioxide 
(Chinnasamy et al., 2009). Microalgae aid in removing 
organic pollutants from wastewater, demonstrating 
promise in waste management and water quality 
improvement (Mulbry et al., 2008). Additionally, the 
integration of microalgae cultivation with waste 
anaerobic digestion enhances system stability and 
methane production, highlighting the potential for 
sustainable waste treatment and biomass generation 
(Ferreira et al., 2022). 

Moreover, microalgae contribute to the 
biorefinery concept, valorizing algal biomass for high-
value product production (Katiyar et al., 2021). This 
holistic approach maximizes resource utilization and 
promotes a circular economy. 

In addition, the integration of microalgae in 
biofloc systems and broader water and waste 
management endeavors showcases considerable 
potential in enhancing water quality, reducing waste, 

and producing valuable products. Ongoing research and 
development are critical to fully unlock the potential of 
microalgae in addressing environmental challenges and 
promoting sustainable practices. 
 

Microalgae in Larviculture and Hatchery Operations: 
Enhancing Survival and Nutrition  

Microalgae-based larviculture and hatchery 
operations provide a sustainable and effective approach 
to raising aquatic larvae. Integrating microalgae as live 
feed ensures a continuous and nutritious food source, 
supporting larval growth, survival, and overall health. 
Furthermore, microalgae contribute to water quality 
management and offer economic and environmental 
advantages. 

The use of microalgae in larviculture and 
hatchery operations has garnered significant attention 
within the aquaculture industry, especially during the 
critical larval stage. Larvae require high-quality live feed 
for successful rearing, and microalgae play a pivotal role 
in providing nutritious and sustainable nourishment. 

Microalgae are rich in essential nutrients like proteins, 
lipids, vitamins, and minerals, making them an ideal 
food source for developing larvae (DANTAS et al., 
2022). 

Integration of microalgae in larviculture and 
hatchery operations offers numerous benefits. 
Microalgae serve as a reliable source of live feed, 
reducing dependency on costly and variable natural 

food sources. Cultivated in controlled environments, 
microalgae ensure consistent feed quality and quantity 
for the larvae (Sales et al., 2022). Additionally, 
microalgae can be enriched with specific nutrients to 
meet the dietary needs of different larval species, 
enhancing growth, survival, and overall health (Cardoso 
et al., 2019). 

Microalgae-based larviculture also aids water 
quality management in hatchery systems. Microalgae 
help maintain water quality by absorbing excess 
nutrients like nitrogen and phosphorus, mitigating the 
risk of water pollution and eutrophication (Li et al., 
2021). They also contribute to oxygen production 
through photosynthesis, ensuring adequate oxygen 
levels for the developing larvae (Cardoso et al., 2019), 
creating a conducive environment for larval growth and 
development. 

Moreover, utilizing microalgae in larviculture 
and hatchery operations presents economic and 
environmental advantages. Microalgae cultivation can 
be cost-effective compared to traditional live feed 
sources such as Artemia nauplii, which can be expensive 
and subject to supply limitations (Rato et al., 2018). On-
site microalgae production reduces reliance on external 
sources and provides a sustainable feed option. 
Additionally, using microalgae as live feed reduces the 
environmental impact associated with collecting and 
transporting natural food sources (Gamboa-Delgado & 

Márquez-Reyes, 2018). 
However, larviculture and hatchery practices 

face diverse challenges, including supply chain issues, 
water quality management, disease outbreaks, genetic 
and reproductive performance of broodstock, the 
COVID-19 pandemic impact, and technical complexities 
in maintaining pure cultures and producing essential 
larval feed (Ahmed & Azra, 2022b; Ragasa et al., 2021). 
Addressing these challenges requires collaborative 
efforts, supportive policies, and continuous research and 
innovation to enhance the efficiency and resilience of 
larviculture and hatchery practices in aquaculture 
(Kourkouta et al., 2022). 

Ensuring suitable live feed for larval stages is 
pivotal in larviculture and hatchery operations. Size-
appropriate feed is essential to enable larvae to 
effectively capture and consume prey, promoting 
growth and survival (Snell et al., 2019). Nutritional 
enhancement of live prey through microalgae 
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enrichment provides a balanced and nutritious diet, 
supporting larval development and overall health 
(Uribe-Wandurraga et al., 2020). Ongoing research and 
development are necessary to optimize microalgae use 
in larviculture and hatchery practices, considering 
specific nutritional requirements and the potential for 
sustainable and cost-effective microalgae biomass 
production (Hashmi et al., 2023; Rocha et al., 2008). 

Additionally, microalgae-enriched diets have 
demonstrated success in increasing survival rates and 
reducing mortality in various aquatic species. The 
nutritional enhancement offered by microalgae 
improves diet quality and balance, leading to enhanced 
larval development, growth, and survival. Further 
research and development are needed to refine the 
formulation and application of microalgae-enriched 
diets in larviculture and hatchery practices, considering 
specific nutritional requirements and the potential for 
sustainable and cost-effective production of microalgae 
biomass. 

 

Microalgae: Bioremediation, Nutrient Uptake, and 
Wastewater Treatment in Aquaculture 

Bioremediation and wastewater treatment using 
microalgae are sustainable and cost-effective solutions 
for managing aquaculture wastewater. Microalgae 
efficiently remove excess nutrients, organic matter, and 
pollutants from wastewater, enhancing water quality 
and mitigating environmental impacts (Smith et al., 
2006). Integrating microalgae-based wastewater 
treatment with resource recovery and biorefinery 
processes promotes circular bioeconomy and 
sustainability in aquaculture practices (Mulbry et al., 
2008). 

Aquaculture operations generate wastewater 
with high nutrient and pollutant levels, posing risks to 
water quality and ecosystems (Posadas et al., 2014). 
Microalgae, adept at nutrient assimilation and pollutant 
removal, provide a natural and cost-effective approach 
to treating aquaculture wastewater (L. Luo et al., 2016). 
By utilizing microalgae's capacity to assimilate nutrients 
like nitrogen and phosphorus, excess nutrients are 
effectively reduced, preventing eutrophication and 

minimizing environmental harm. Microalgae also 
assimilate organic matter and pollutants, further 
improving water quality (Hashmi et al., 2023). 

Studies demonstrate microalgae's potential in 
removing various pollutants from aquaculture 
wastewater, depending on factors like microalgae 
species, wastewater load, and supplemental carbon 
dioxide (Liu et al., 2019). Optimization of cultivation 
conditions and the selection of appropriate microalgae 
species are crucial for effective wastewater treatment 
(Singh et al., 2023). Moreover, the biomass generated 
during microalgae cultivation can be utilized for biofuel 

production (Kapoore et al., 2021), animal feed, high-
value compound extraction, and adsorption processes, 
promoting circular bioeconomy and sustainability (Han 
et al., 2019; Hawrot-Paw et al., 2019). 

Microalgae's role as a tool for nutrient removal 
in aquaculture effluents holds immense potential, 
benefiting water quality, the environment, and 
sustainable aquaculture development (Liu et al., 2019; 

Mulbry et al., 2008). Research highlights their ability to 
efficiently remove excess nutrients, reducing 
eutrophication risk and enhancing water quality (Han et 
al., 2019). Understanding nutrient uptake and 
assimilation mechanisms is vital for predicting algal 
growth, nutrient cycling, and ecosystem functioning 
(Kapoore et al., 2021). Algae's contribution to 
biogeochemical cycles, especially the carbon cycle 
through photosynthetic carbon fixation, highlights their 
significant role in addressing climate-related challenges. 

Applications of microalgae-based systems in 
treating aquaculture wastewater show promise in 
reducing nitrogen and phosphorus loads and improving 
water quality (Litchman et al., 2007). Algae-based 
constructed wetlands and microalgae assimilation 
capabilities contribute to efficient nutrient and pollutant 
removal from wastewater (Hessen et al., 2004). The 
integration of microalgae in aquaculture practices not 
only enhances wastewater treatment but also offers 
opportunities for resource recovery and sustainable 
wastewater management (Falkowski et al., 1998). 

However, challenges such as bacterial 
contamination, unfavorable effluent conditions, and 
technological assessments can hinder the wide-scale 
application of microalgae biotechnology in wastewater 
treatment. Addressing these challenges and advancing 
research in this field will further optimize the use of 
microalgae-based systems for sustainable aquaculture 
wastewater management. 

 

Challenges, Research Gaps, and Future Advancements 
in Microalgae Technology for Aquaculture 

The limitations of microalgae technology in 
aquaculture encompass economic challenges (Vieira & 

Pecchia, 2022), scaling production (Han et al., 2019), and 

optimizing strains (Han et al., 2019). Economic 
constraints arise due to high production costs and 
infrastructure investments. Scaling production from lab 
to commercial scale requires complex optimization of 
cultivation systems (Han et al., 2019). Strain selection is 
critical for efficient nutrient removal while maintaining 
high biomass productivity (L. Yang et al., 2021). 
Collaboration is essential to overcome these limitations 
and integrate microalgae sustainably in aquaculture 
(Wikfors & Ohno, 2001). 

Additionally, there are some research gaps 
include understanding nutrient assimilation (Kosten et 
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al., 2020; X. Yang et al., 2020)., algal-bacterial cooperation 
(Falaise et al., 2016), economic assessments (Soto-
Sánchez et al., 2023), biomass harvesting optimization 
(BASHIR et al., 2022), scaling production (Han et al., 
2019), strain selection, and region-specific studies 
(Ayswaria et al., 2023). Advancements like natural 
antibiotics, improved biomass production, genetic 
engineering, economic assessments, biomass 

valorization, algal-bacterial interactions, and disease 
prevention applications hold potential to enhance 
microalgae technology for sustainable aquaculture (Y. 
Ma et al., 2019). 
 

Conclusion 
 

The literature review emphasizes microalgae's 
role in boosting aquaculture sustainability. It discusses 
extensive studies on microalgae-assisted aquaculture, 
covering nutrient assimilation, algae cultivation, 
wastewater treatment, and more. Microalgae are seen as 
a sustainable feed for aquaculture, with ongoing efforts 
to enhance production systems and quality control. 
Rapidly growing microalgae strains hold promise for 
various technologies. Addressing challenges in 
microalgae tech involves biomass production 
advancements, strain selection, genetic engineering, and 
disease prevention strategies. Beyond aquaculture, 
microalgae are potential biofuel feedstocks, with 
ongoing research to scale up lipid production. 
Microalgae are rich sources of high-value compounds 
like pharmaceuticals and natural colorants, but 
optimization is needed for economical production. 
These organisms also yield macromolecules with 
commercial applications. The productivity and 
composition of microalgae depend on cultivation 
conditions and nutrient profiles, including fatty acid 
composition. In conclusion, microalgae offer 
sustainability benefits through biofuel and high-value 
compound production, natural colorants, and regulation 
of fatty acid composition. Optimizing processes and 
conducting further research is vital to fully utilize 
microalgae's potential in aquaculture. 
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