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Abstract: The review article focuses on the potential of bio-based plasticizers to 
enhance the mechanical properties of polymer membranes, addressing the critical 
issues of fragility and brittleness. It highlights the environmental and health risks 
associated with traditional plasticizers like phthalates and also advocates for the 
adoption of sustainable and non-toxic bio-based alternatives. In doing so, it 
emphasizes the significant advancements in bio-based plasticizer research, aiming to 
stimulate further scientific inquiry into their application in membrane synthesis. By 
advocating for the adoption of green polymers, the article underscores the critical 
necessity for the development of environmentally benign and mechanically robust 
membrane technologies. These advancements hold considerable promise for a wide 
array of applications, notably within biomedical domains and separation processes, 
heralding a new era of sustainability and functionality in membrane technology. 

 
Keywords: Bio-based plasticizer; Embrittlement; Flexibility; Random scission, 
Tensile test. 
 

  

Introduction  
 
Polymer membranes are essential in applications 

such as gas separation, water treatment, and biomedical 
devices. Petroleum-based polymers, including 
polyethersulfone (PES), polysulfone (PS), and 
polyvinylidene fluoride (PVDF), are extensively utilized 
in the production of membranes for several applications 
(Dong et al., 2021). These polymers are not considered 
sustainable and environmentally friendly due to their 
resistance to microbial degradation (Sadeghi et al., 2021). 
In contrast, biodegradable polymers like polylactide 
(PLA), chitosan, and polyacrylonitrile/starch blends 
offer a more sustainable alternative (Q. Liu et al., 2015). 

However, the polymer membranes can be brittle 
and fragile due to the rigid nature of their polymer 
chains (Farah et al., 2016). To overcome these challenges, 
incorporating plasticizers into polymer membranes has 
emerged as a promising solution. Plasticizers increase 

the flexibility of polymer chains, reducing brittleness 
and fragility (Farah et al., 2016) 

Although phthalates have been commonly used as 
plasticizers, their environmental and health risks have 
led to a search for safer alternatives. Bio-based 
plasticizers, derived from renewable sources, have 
gained attention as sustainable substitutes for traditional 
plasticizers. These bio-based options not only offer 
improved environmental safety but also possess 
biodegradable and non-toxic properties, making them 
suitable for applications where environmental and 
human health are critical considerations (Farah et al., 
2016). 

The use of bio-based plasticizers offers an 
opportunity to enhance the mechanical properties of 
polymer membranes, addressing issues related to 
fragility and brittleness. Researchers are exploring 
advancements in bio-based plasticizers to revolutionize 
the polymer industry, to address the raised concerns 
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about the common plasticizers, especially the phthalates 
(Bocqué et al., 2016). 

Therefore, incorporating bio-based plasticizers into 
polymer membranes is a significant advancement in 
improving their mechanical properties and ensuring 
durability in demanding applications. By transitioning 
to sustainable and environmentally friendly alternatives 
like bio-based plasticizers, the polymer membrane 
industry can tackle performance limitations associated 
with traditional materials, leading to enhanced 
functionality and broader utility across different fields. 

The objective of this review is to garner the attention 
of the scientific community towards the imperative of 
dedicating efforts to foster the utilization of bio-based 
plasticizers in membrane synthesis. This initiative is 

poised to facilitate the integration of green polymers into 
membrane technology, thereby promoting 
environmental sustainability. 
 

Method  
 

The methodological framework involves a 
comprehensive review of the literature surrounding the 
significance of polymer membranes across various 
applications. This is followed by delving into the 
concerns related to sustainability and environmental 
friendliness of plasticizers. The subsequent sections 
delve into the potential of biobased plasticizers for 
membrane fabrication, discussing the benefits and 
challenges associated with their application, specifically 
addressing the critical issue of membrane embrittlement 
and the innovative use of biobased plasticizers to 
mitigate this challenge. 

The data collection process involved an exhaustive 
search of peer-reviewed articles, conference 
proceedings, books, and book sections. The search 
criteria were formulated to include a broad range of 
keywords such as polymer membranes, sustainability in 
polymer production, embrittlement, plasticizers in 
membrane technology, and bio-based plasticizers. This 
approach ensured the capture of a wide array of studies 
relevant to the scope of this review. 

The analysis of collected literature was structured 
to first highlight the critical role of polymer membranes 
in various applications, gradually transitioning into the 
discussion on the embrittlement of fragile polymeric 
membranes and the causes of membrane embrittlement. 
The review provides an in-depth examination of the role 
of plasticizers in enhancing the flexibility and durability 
of polymer membranes. 

Each selected study was critically evaluated for its 
relevance, scientific rigor, and contribution to the field of 
polymer membrane technology. The writing of the 
literature was conducted in a manner that ensures a 

logical progression of ideas, from the establishment of 
context regarding the significance and sustainability 
concerns of polymer membranes to the detailed 
examination of solutions addressing these concerns, 
specifically through the use of biobased plasticizers.  
 

Result and Discussion 
 
Membrane brittleness 

Membrane brittleness refers to the tendency of a 
membrane to fracture or break under stress without 
significant deformation. When membranes exhibit high 
brittleness, they become vulnerable to failure, 
compromising their effectiveness in water purification. 
A polymeric membrane is prone to fracture when it 
constitutes precursor(s) with rigid crosslinking, high 
bulk density, reduced free volume, and entanglement 
within the membrane. These lead to the critical molar 
mass (Mc) of the polymer material exceeding its molar 
mass (M) (H. J. Lim et al., 2023), (Koyama et al., 2023), 
exhibiting higher glass transition temperature (Tg) (Guo 
et al., 2013). This situation renders the membrane 
vulnerable to random polymer chains.  

The random scission of the chains is the 
fragmentation of chains in the polymer (H. J. Lim et al., 
2023), (Koyama et al., 2023). This diminished 
entanglement in the polymer renders the membrane 
prone to cracking and fracture. Chain scission in 
polymers is a complex phenomenon that can be linked 
to a multitude of factors. Applied stress can result in the 
rupture of covalent bonds, leading to chain breakage 
(Galán, 2020). Another causative factor for chain scission 
in polymers is UV light irradiation, which leads to the 
excitation of the polymer and the formation of radicals 
(Karim et al., 2022), resulting in the photochemical 
scission of covalent bonds and the subsequent collapse 
of the chains (Pantuso et al., 2019). Moreover, exposure 
to solvents, particularly polar ones, serves as another 
reason for chain scission in dendronized polymers (DPs) 
(Messmer et al., 2019). The scission in the degree of 
polymerization (DPs) depends on the presence of highly 
polar solvent and rightful dendritic generation, g. 
Dendritic generation depends on the polymerization 
category of the DPs, (Arkas et al., 2023). In fuel cell 
membranes, the generation of radicals tends to unzip 
side chains, subsequently inducing chain scission 
(Khattra et al., 2020).  Figure 1 schematically shows an 
example of random chain scission.  

Embrittlement emanates from membranes’ 
stiffness, low flexibility, and minimal elongation at 
break (Akbarzadeh et al., 2021). As a result of the weak 
mechanical strength, membranes performance and 
durability suffer (Cao et al., 2017). This poses a 
significant limitation in respect of their potential 
applications. The limitation arises from concerns 
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regarding the integrity of the membranes, which is 
prone to cracking, breaking, and the emergence of 
pinholes during processing and operation. Over time, 
brittle membranes tend to lose their initial structure and 
performance due to attrition (Wang et al., 2020). The 
high vulnerability of brittle membranes to cracking and 
breakage is a major issue in maintaining the intended 
application, as it necessitates frequent replacement, 
causes operational downtime, and additional costs. 

 

 
 

Figure 1. Diagrammatic Depiction of Chain Scission in 
Polyhydroxybutyrate 

 
The brittleness of membranes is a common 

characteristic observed in biopolymers, stemming from 
their inherent weakness in mechanical properties. These 
biodegradable membranes include cellulose acetate 
(Rehman et al., 2022; Akbarzadeh et al., 2021, 
(Cindradewi et al., 2021), (Mansor et al., 2020), 
polysterene (Achari et al., 2020), polyvinyl alcohol 
(Karim et al., 2022), polylactic acid (Bandehali et al., 
2021), carrageenan (Okolišan et al., 2022), and more. For 
instance, the β-D-glucose rings in the main chain of 
cellulose acetate (CA) is the main contributing factor for 
the rigidity and embrittlement of CA membrane 
(Teixeira et al., 2021). 

In addition to the inherent nature of the polymers 
with which the membranes are made from, ageing of 
membranes contribute immensely to embrittlement. The 
mechanical strength of the membrane is prone to 
deterioration over time, resulting in a decrease in 
plasticization and an increase in stiffness. It has been 
found that polymers, such as PLA, become more brittle 
with time (Cui et al., 2020). Abdelaal et al., (2014) 
reported the embrittlement of a high-density 
polyethylene geomembrane due to long-term stress. 
According to Anadão et al. (Anadão et al., 2018) with the 
passage of time, all membranes exhibit brittleness. 
However, this effect is often noticeable in the composite 
membranes because of the formation of defects within 
them. The combined effect of deformation and reduced 
mechanical strength with time leads to membrane 
embrittlement (Feng, 2017). Membrane ageing leading to 
brittleness is widely reported in the literature. However, 

most of the ageing-triggered embrittlement are 
associated with exposure to chemicals and influence of 
heat (Li et al., 2021; Kadirkhan et al., 2022; Arhant et al., 
2022). Therefore, the nature of the degradation is often 
peculiar to the characteristics of the chemical with which 
the membranes are exposed to.  

 
Plasticizers for membrane flexibility 

The stiffness and toughness of membranes, which 
result in embrittlement, are typically addressed by 
adding plasticizers. Plasticizers can be categorized as 
external and internal. External plasticizers are added at 
elevated temperatures to polymers without forming 
bonds between them (Tyagi & Bhattacharya, 2019), 
(Jamarani et al., 2018). They only interact to provide the 
necessary flexibility by avoiding or limiting friction 
between the polymer chains. On the other hand, internal 
plasticizers are additives that become part of the 
polymers through grafting or copolymerization, thereby 
creating free space for chains to move and resulting in 
flexibility (Tyagi & Bhattacharya, 2019). They are a 
group of non-volatile, low-molecular-weight additives 
used in polymer processing to enhance softness and 
flexibility by reducing the glass transition temperature 
(Tg) (Cindradewi et al., 2021; Mansor et al., 2020). 
Furthermore, they are monomers co-opted into the 
polymer chains and hence offer less freedom to chain 
flexibility due to created bonds (Jamarani et al., 2018). 
Depending on their compatibility with the polymer 
plasticizers are further classified into primary and 
secondary. A plasticizer is categorized as a primary 
plasticizer when it can dissolve in a plasticizer at high 
concentrations within the usual processing temperature 
range. Conversely, secondary plasticizers exhibit less 
compatibility with the polymers (Tyagi & Bhattacharya, 
2019). 

The use of plasticizers to improve the pliability of 
membranes is widely used to address embrittlement in 
polymeric membranes and films (Kaczorowska, 2022; 
Cindradewi et al., 2021; Salahuddin et al., 2018). The 
application of plasticizer in polymeric membranes 
promotes polymer chain mobility and flexibility, 
thereby lowering the propensity for embrittlement 
(Mansor et al., 2020). This achieved by reducing the 
intermolecular forces between the chains by increasing 
the space between them.  

Unlike Jamarani and colleagues, the likes of 
Mancilla-Rico and others (Mancilla-Rico et al., 2021) 
opined that plasticizers interact with the host polymer 
and neutralize the polar groups of the polymer with 
their own polar groups. Although the nature of polar 
group neutralization is not stated here, it suggests that 
some sort of bond formation is possible between the 
plasticizers and the polymers. Achari et al. (Achari et al., 
2020) described the application of dibutyl phthalate 
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(DBP) to solve the brittleness of the polystyrene sulfonic 
co-maleic acid/Sodium alginate (PSSAMA/NaAlg) 
membrane. The authors reported the formation of strong 
interactions between the hydroxyl groups of NaAlg and 
the carboxyl-oxygen groups of DBP forming hydrogen 
bond and minimizing the intermolecular forces between 
the polymer chains. 

Plasticizers are known to enhance the flexibility of 
polymeric membranes, and their mechanism can be 
attributed to three classical theories proposed by 
renowned researchers. One of these theories is the 
lubricity theory, which was introduced by Kirkpatrick. 
According to this theory, generally, certain segments of 
the plasticizer interact with specific parts of the polymer, 
while the remaining unbound portions of the plasticizer 

serve to lubricate the connections between the polymer 
molecules (Kirkpatrick, 1940). The theory implies that an 
effective plasticizer should have a suitable structure and 
possesses mutually attractive groups between the 
plasticizer and the polymer and positioned 
appropriately. The second theory was proposed by 
Aiken et al. (Aiken et al., 1947), and it suggests that the 
attractive groups present in both the plasticizer and the 

polymer interact, leading to the formation of dipoles 
along the polymer chains. Meanwhile, the non-polar 
tails of the plasticizer tend to cluster together, resulting 
into a concentration of unpaired polar chains on the 
polymer surface, forming a viscous gel (Marcilla & 
Beltrán, 2012). The gel formed, plays a crucial role in 
providing the material with flexibility. Although the 
study that led to the emergence of this theory was 
conducted using PVC, it is believed that this principle 
may apply to other petroleum-based polymers as well. 
Accordingly, the gel theory suggests that plasticizers 
with straight aliphatic chains contribute more to 
polymer plasticization compared to those with cyclic 
aromatic groups (Sinisi et al., 2021). The third theory, 
known as the free volume theory, resulted from the 
efforts of various authors, including Fox and Flory (Fox 
& Flory, 1950), who postulated it years after the lubricity 
and gel theories (Marcilla & Beltrán, 2012). The theory 
suggests that only free volume exists between atoms and 
molecules, and nothing else. This free volume represents 
the volume of space between atoms and molecules, 
termed "holes." An increase in the free volume of these 
holes permits improved motion of polymer molecules, 
which arises from the movement of chain ends, side 
chains, and the main chain (Platzer, 1982). Thus, 
according to (Marcilla & Beltrán, 2012), the 
incorporation of a lower molecular weight compound 
leads to the creation of more end groups, an increased 
length of side chains, and consequent motion of the main 
chain in addition to lowering the glass transition 
temperature. This brief elucidation explains the 

mechanism of combating embrittlement in polymer 
membranes using plasticizer. 

Traditional plasticizers commonly employed to 
address embrittlement are phthalates, adipates and 
other synthetic compounds having potential health and 
environmental hazards. (Achari et al., 2020), (Zuber et 
al., 2019). As a result, several countries have made 
policies against their use in areas such as food 
packaging, healthcare devices, and toys . Moreso, they 
are not sustainable because they are derived from 
petroleum resources. Hence, there is a need for naturally 
based plasticizers that are both non-toxic and 
sustainable (Zhu et al., 2021). Bio-based plasticizers can 
be derived from agricultural resources, including 
vegetable oils and agro-industrial wastes (Righetti et al., 

2023), (Cai et al., 2020), tartaric acid (Zhu et al., 2021), 
(Howell & Sun, 2018), glycerol and citric acid 
(Kudahettige-Nilsson et al., 2018) and so on. 

 
Bio-based plasticizers 

Bio-based plasticizers are eco-friendly, inexpensive, 
and sustainable additives for combating the 
embrittlement of polymeric membranes. When blended 
with polymers, they interact to increase the inter-chain 
space and enable chain mobility, thereby enhancing 
membrane flexibility and subduing embrittlement. Bio-
based plasticizers used to reduce membrane and thin 
films embrittlement include glycerol (Okolišan et al., 

2022), polyethylene glycol (PEG) (Naser et al., 2021), 
triacetin (TA), and triethyl citrate (TC) (Cindradewi et 
al., 2021) to mention only few. 

In addition to eco-friendliness, cost-effectiveness, 
and sustainability, bio-based plasticizers are usually 
endowed with straight chains, unsaturated double 
bonds, polar groups, and hydroxyl groups (Zhang et al., 
2021). These properties enable them to participate in 
macromolecular interactions between plasticizers and 
polymers during blending. Therefore, the selection of 
the plasticizer in relation to the polymer should be 
guided by the presence of matching groups in the 
polymer, longer chains, as well as the intended purpose 
of the polymeric material.  

Glycerol can occupy intermolecular space between 
polymer chains and interfere with the strong hydrogen 
bonds between the adjacent molecules. This action 
induces chains mobility and flexibility in membranes 
(Ab Rahman et al., 2023).  For example, glycerol can be 
absorbed within the pectin chains, resulting in 
interactions that occur in different ways. These 
interactions include the formation of hydrogen bonds 
and covalent linkages through reactions such as 
hydroxyl-hydroxyl or hydroxyl-carbonyl condensation 
(Costanza et al., 2019). The interactions aid the mobility 
of the chains to combat brittleness in polymeric 
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membranes, films, or skin tissues. It is convincing to 
assert that glycerol is a suitable plasticizer for 
biopolymers containing hydroxyl and/or carbonyl 
groups. The compatibility of glycerol with biopolymers 
is evident in its application to enhance flexibility in 
carrageenan membrane (Okolišan et al., 2022), chitosan 
membrane (Gupta et al., 2023), chitosan film (Lau et al., 
2021), chitosan skin tissue (Faikrua et al., 2009), 
cellulose-based film  (Rahman et al., 2023), (Syafiq et al., 
2022), cellulose acetate film (Cindradewi et al., 2021), 
and many more. On the issue of plasticizer stability, the 
hydrogen bonds formed between glycerol and the 
polymers, which arise from interference with the 
polymer inter-chain hydrogen bonds. The formation of 
the glycerol-polymer hydrogen bond acts as a water 

shield that prevents the leaching of the glycerol (Tarique 
et al., 2021). Citrate ester-based plasticizers play a crucial 
role in preventing membrane embrittlement. This group 
of plasticizers includes acetyl triethyl citrate (ATEC), 
triethyl citrate (TEC), acetyl tributyl citrate (ATBC), and 
tributyl citrate (TBC). They are used to efficiently 
enhance the flexibility of cellulose ester polymers 
membranes due to the interaction between the 

plasticizer and polymer ester groups (Teixeira et al., 
2021). Zuber et al. (Zuber et al., 2019) reported the 
application of TEC to plasticized polyvinyl alcohol 
(PVA) film using the solution casting method. In this 
method, distilled water was used to dissolve the PVA, 
which was then stirred at 80°C for 2 hours. Afterwards, 
triethyl citrate was added and stirred for 1 hour at the 
same temperature. The resulting mixture was then cast 
into a container and dried under vacuum conditions at 
60°C. Chaos et al. (Chaos et al., 2019) investigated the 
effect of TBC on improving the properties of 
polyhydroxybutyrate and polylactide food packaging 
membranes using the solvent casting method. Briefly, 
solvent casting involves the uses solvent to dissolve the 
polymer instead of distilled water, poured into a flat 
bottom glass Petri dish. The solvent is then allowed to 
evaporate after which the film is carefully peeled off the 
bottom of the Petri dish. The authors reported sufficient 
mechanical strength and barrier properties for both 
membranes when using the plasticizers. Liu et al. (J. Liu 
et al., 2023) studied the plasticization effect of the some 
common citrate plasticizers, namely ATEC, TEC, ATBC, 
and TBC, on PVC film. Their findings revealed an 
enhancement in the flexibility of the film, with ATEC 
and ATBC having greater plasticization impact than 
TEC and TBC. Additionally, they noted a decrease in the 
thermal stability of the resin plasticized with the non-
acetylated citrates due to the interruption of the strong 
van der Waals force between chlorine (Cl) atoms in the 
polymer chains by the citrates, despite their non-
participation in any reactions. Triacetin is another bio-
based plasticizer that is effective in imparting flexibility 

to stiff membranes. The application of triacetin to 
prevent brittleness in polymeric films, such as PVA 
(Zuber et al., 2019) film and cellulose acetate film (Dreux 
et al., 2019), has demonstrated its effectiveness in 
addressing embrittlement. Dreux et al. used both solvent 
and melt processing methods. In the melt processing 
technique, the authors used a flat die containing screw 
extruder coupled with peristaltic pump for injecting the 
plasticizer before the introduction of the cellulose 
acetate powder. After which the extrusion was perform 
at an appropriate temperature and screw speed 
according to the plasticizer proportion. Isosorbide 
diesters are other plasticizers of organic origin effective 
in inducing structural changes in polymeric products, 
including membranes. This group of compounds 

includes isosorbide dibutyrate (SDB), isosorbide 
dihexanoate (SDH), isosorbide dioctanoate (SDO), and 
isosorbide didecanoate (SDD). According to Yang et al. 
(Yang et al., 2017), the higher the carbonyl group content 
of the isosorbide diesters used in the blend, the greater 
the flexibility of a material made from a polymer, such 
as PVC. The high number of carbonyl groups in 
isosorbide diesters is accompanied by a shorter length of 

the alkyl chain in the compounds. Dibutyl sebacate, 
another bio-based compound is a promising plasticizer 
used in polymers, such as cellulose triacetate (CTA) and 
so helpful in providing the needed mechanical strength 
in the membrane (Merlo et al., 2022). Bio-based 
compounds, including diheptyl succinate (Jagarlapudi 
et al., 2023), ethylene glycol monoester (Nosal et al., 
2021), and many others, play a significant role in 
preventing brittleness. 

According to Kumar (Kumar, 2019), a plasticizer 
content of 20-30% in the blend tends to provide an 
excellent plasticization effect, resulting in optimum 
flexibility of the polymer film. Therefore, it suffices to 
say that playing around with these proportions yields 
films of desired quality and performance. 
 
Application of Universal Testing Machine in Membrane 
Assessment 

A Universal Testing Machine (UTM) is commonly 
employed to evaluate the impact of force on membranes, 
determining their resilience to operational pressures. 
This apparatus measures the maximum load a 
membrane can endure before failure, providing critical 
information for membranes used in filtration and 
separation processes (Mataram et al., 2017). The machine 
usually has two opposing clamping jaws for clamping 
the ends of the membrane. The membrane sample is 
fixed by first releasing the clamping jaws, inserting the 
sample and then closing them. The tensile stress or 
elongation at break measurements are then carried out 
by following the instructions on the control panel or 
using the computer connected to the device. The stress-
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strain curve shows the extent of load that the membrane 
can bear. The slope of the linear portion of the stress-
strain curve determines Young's modulus, which 
Equation 1 defines as the ratio of stress (𝜎) to strain (𝜀) 
within the linear elasticity range. The stress-strain curve 
shows the extent of load that the membrane can bear. At 
the end of the tensile test, the elongation at break of the 
membrane could be computed using Equation 2, 
where ΔX is the change in length and X is the original 
length of the tested sample. 

 

𝑌 =
𝜎

𝜀
  

 

 (1) 

𝐸𝑏 = (
∆𝑋

𝑋
) ∗ 100  (2) 

 
 
The assessment techniques 

The mechanical characteristics of membranes are 
widely measured using two types of specimen shapes 
the rectangular and the dumbbell-shaped (Yuan et al., 
2023). Both techniques provide a unique way to evaluate 
the strength and elasticity of membrane materials, 
giving detailed information on how they behave 

mechanically in different scenarios. The methods 
involve the gripping of the both ends of a specimen. To 
ensure that tensile measurements are accurate, the 
clamping test requires that both ends of the specimen be 
precisely gripped with the appropriate amount of 
pressure to prevent sample failure. The rectangular 
specimen is a regular rectangular shape, while the 
dumbbell-shaped approach uses a sample that has been 

painstakingly carved into the shape of a dumbbell. This 
particular shape is designed to ensure that breaking 
occurs in a controlled area during the tensile test by 
concentrating the stress on the central, narrower 
segment of the specimen. This arrangement allows for a 
more accurate assessment of the mechanical properties 
of membrane, including its elongation capacity and 
tensile strength. The two shaped methods employed in 
the tensile testing of polymer membranes are displayed 
in Figure 2. 

 

 
Figure 2. Two types of sample shape utilized 

tensile test 

 
Recent applications of bio-based plasticizers in addressing 
membrane brittleness 

The biobased plasticizer application method in 
biofilms and membrane preparation mostly involves 
blending with the polymer (Jost & Langowski, 2015), 
(Tian et al., 2022). The use of bio-based plasticizers to 
impart flexibility to polymeric membranes has proven to 
be highly beneficial in ensuring the sustainability and 
cost-effectiveness of membrane applications across 
various aspects of human endeavours, as reported by 
several researchers. A significant portion of these studies 
has focused on the field of film fabrication for 
applications such as bioplastics (J. Liu et al., 2023), food 
packaging materials (Omar Anis Ainaa et al., 2021), 
(Chaos et al., 2019), (Dai et al., 2022), (Sanyang et al., 
2015), (Harussani et al., 2021), (Tarique et al., 2021),  
(Syafiq et al., 2022) drug delivery (H. Lim & Hoag, 2013), 
air purification (Ghosh et al., 2021) and battery cells 
(Abdulwahid et al., 2023), (Raut et al., 2019). The 
researchers used tensile strength (MPa), Young's 
modulus (MPa) and elongation at break (%) to assess the 
effectiveness of the plasticizers and have consistently 
reported a decrease in tensile strength and Young's 
modulus, along with an increase in elongation at break. 
This does not come as a surprise looking at the 
mechanism of polymer plasticization by additives. The 
reduced intermolecular forces within the polymer 
chains resulting from the fragmentation by the 
plasticizer lead to a decrease in both tensile strength and 
Young's modulus. However, it also promotes the 
deformation of the polymer chains, leading to an 
increase in elongation at break. To enhance these 
characteristics, fillers like nanofibrillated cellulose can 
be incorporated as reinforcement into the plasticizer-
polymer solution (Tian et al., 2022). This can expand its 
applications in systems that involve pressure, such as 
water purification. 

Tensile strength (MPa) indicates the maximum load 
per unit area that a membrane can withstand without 
breaking, and it is often measured by a Universal Testing 
Machine (UTM). It is a measure of the allowable 
operating pressure of a membrane system and depends 
on various factors, such as the nature and thickness of 
the membrane support (Charlton et al., 2020). 
Additionally, it relies on the properties of the polymer 
material and the structure of the membranes. Therefore, 
membranes that exhibit higher mechanical strength tend 
to resist mechanical degradation and may potentially 
have a longer lifespan (Ngobeni et al., 2021). The 
elasticity of membranes is typically evaluated by 
determining Young's modulus. A tensile tester can be 
used to generate stress-strain plots (Williams, 2022). 
After which the Young's modulus of the membrane can 
be computed. Elongation at the break of a membrane 
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indicates the membrane's ability to deform when 
subjected to pressure. It is computed as the ratio of the 
change in length after breakage to the initial length. 
Nonetheless, the decrease in tensile stress can diminish 
the membrane's suitability in such applications, 
particularly when pressure is used to drive the process. 

To minimize the compromise between strength and 
flexibility, fillers such as nanofibrillated cellulose can be 
added as reinforcement to the plasticizer-polymer 
solution (Tian et al., 2022). Javed (Javed, 2015), also 
noted that 'curing' can be applied to lessen the decrease 
in strength of plasticized membranes. This can be 
achieved by placing the membrane in a desiccator and 
heating it in a well-ventilated oven at 105°C for a day. 
Zafar et al. (Zafar et al., 2022) reported the blending of 

polycaprolactone-modified cellulose with PLA to 
fabricate a flexible film with maintained tensile strength 
and improved resistance to plasticizer migration. 
Nevertheless, these attempts to prevent the decrease in 
strength of plasticized films are accompanied by a 
decrease in flexibility themselves, necessitating the 
optimization of filler proportion and the curing process. 
This can help to expands its applications in pressure-

based systems like water purification.  
Some bio-based plasticizers can dissociate from the 

polymer material into the environment through 
valorization or dissolution, resulting in plasticizer loss 
and a reduced lifespan. However, certain plasticizers 
demonstrate remarkable migration resistance, attributed 
to factors such as low volatility and high compatibility 
with the polymer among others. This is evident from the 
recent efforts of several researchers, including (Brdlík et 
al., 2022;  Feng et al., 2019; Gao et al., 2016). In addition 
to increasing mechanical strength, the use of biobased 
plasticizers such as Cyrene and Cygnet have been 
reported to enhance the permeability, morphology, and 
thermal stability of membranes (Milescu et al., 2021). 

 
Conclusion  

In summary, the investigation of bio-based 
plasticizers has revealed their significant potential to 
improve the flexibility and strength of membranes, 
which is useful in a variety of applications, particularly 
in the biomedical field and in separation processes. The 
switch to these bio-based alternatives is particularly 
important to reduce reliance on traditional, toxic 
plasticizers such as phthalates, ushering in a new era of 
safer and more sustainable use of materials. The dual 
functionality of bio-based plasticizers, which act as both 
solvents and plasticizers, represents a significant 
advance in membrane manufacturing technology and 
makes them excellent candidates for the development of 
future membrane materials.  

The widespread use of biobased plasticizers in the 
production of biomedical membranes is a noteworthy 
development, as it now surpasses their application in 
separating membranes. This discrepancy is particularly 
notable when one considers the extent of application and 
demand for separation membranes worldwide, 
suggesting that there is an urgent need to increase 
acceptance and promotion in this sector. Despite the 
promising properties of bio-based plasticizers, there are 
some challenges, such as the need for high temperatures 
in the preparation of the doping solution to effectively 
dissolve the polymers. In addition, the risk of the 
polymers leaching from the membranes is a critical area 
for further investigation. 

In light of these factors, it is critical that future 

research projects address the new issues surrounding 
the use of biobased plasticizers in membrane technology 
in addition to improving the performance characteristics 
and application techniques of these materials. With a 
focus on sustainability and environmental safety, these 
investigations will be crucial to maximizing the potential 
of biobased plasticizers and advancing membrane 
technologies for a broad range of applications. 
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