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Abstract: Some people manipulate sales in marketplaces and other retail settings 
by combining beef and pork since the prices are so high.  In addition to educating 
the public about these distinctions, this research aims to develop a technological 
solution for recognizing and differentiating between pork and beef.  The proposed 
hybrid model, a combination of a Resnet-50 and a Support Vector Machine (SVM), 
is introduced for the classification of Beef and Pork Meat.  In this hybrid model, the 
Resnet-50 functions as a powerful feature extractor, then utilizing its inherent 
ability to automatically capture distinctive features from diverse and highly specific 
meat image datasets. The SVM, serving as the binary classifier, effectively utilizes 
the extracted features for precise classification. The hybrid model achieves an 
outstanding accuracy of 100%, surpassing the performance of individual classifiers, 
with Resnet-50 achieving 97% accuracy and Resnet-50 achieving 97% obtained from 
the Hybrid model by gaining the best parameter C is 0,1 and the Kernel is linear. 
This remarkable outcome signifies the synergistic effectiveness of combining 
Resnet-50 and SVM.  
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Introduction  
 
Meat stands as a staple in human diets, offering a 

rich source of protein vital for cognitive and physical 
well-being. With its widespread consumption, the 
market is abundant with various meat types. Although 
categorized for sale, some traders capitalize on soaring 
beef prices, yielding significant profits with minimal 
investment. Amidst these practices, there is an 
unfortunate occurrence of meat adulteration (Lihayati et 
al., 2016). Consumer choices in meat purchases often 
hinge on factors such as safety, quality, and popularity, 
encompassing considerations like color, tenderness, 
flavor, and aroma (Farinda et al., 2018). Trust plays a 
pivotal role in shaping consumer preferences and 
behaviors, particularly when it comes to food choices 
and consumption habits (Nuhraini et al, 2018). 
Referencing Figure 3, the visual depiction highlights the 
contrasting textures between beef and pork (Fitrianto & 
Sartono, 2021; Lee et al., 2022. 

The pervasive influence of technological progress 
on daily life significantly enhances individuals' 

efficiency in executing various tasks. Technology 
catalyzes more effective and time-efficient task 
completion (Kuhlman, 2009; Rustinsyah, 2019).  A prime 
example of this impact is evident in the livestock and 
food sectors, where technology can aid the public in 
discerning between natural beef and pork meat (Li & 
Yang, 2023; Pauly et al., 2017). Given the challenge of 
distinguishing between the different textures of beef and 
pork, a digital approach is one of the alternatives to solve 
this problem (Neneng et al., 2016). One such 
technological solution involves leveraging the power of 
Deep Learning, a rapidly advancing branch of Machine 
Learning (Junayed et al., 2019; Komuro et al., 2023; Tian 
et al., 2022), with Convolutional Neural Networks 
(CNN) at the forefront. Various architectural models, 
including LeNet, AlexNet, VGGNet, ResNet, 
EfficientNet, ResNet50, and DenseNet, exemplify the 
diversity within CNNs. Typically, these architectures 
consist of stacked convolutional layers, a pooling layer, 
and a fully connected layer. This technological 
integration holds promise for revolutionizing the 
identification and differentiation of meat types, 
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addressing the challenges posed by subtle textural 
variations (Navaneeth & Suchetha, 2019). 

This study builds on the work of (Komuro et al., 
2023), which successfully classified benign and 
malignant breast cancer histopathology imaging 
subtypes using a hybrid CNN- LSTM-based transfer 
learning approach. The dataset included 2480 clear 
images and          542 cancer images. The previous research 
achieved an outstanding 99% accuracy in the binary 
classification of benign and malignant cancer 
(Srikantamurthy et al., 2023). This success inspires our 
exploration of a similar hybrid model approach to 
differentiate between beef and pork meat in our current 
study. 

This study aims to improve image quality, focusing 
on texture, marbling, color, and shape analysis using the 
CNN-ResNet50 method. By leveraging the CNN- 
ResNet50 architecture, which includes multiple 
convolutional layers (Akhtar et al., 2016; Attokaren et al., 
2017), we intend to classify beef and pork meat 
effectively. To enhance the obtained results, we'll 
complement this architecture with an SVM (Support 
Vector Machine) (Datumaya Wahyudi Sumari et al., 
2021; Utami Putri & Redi Susanto, 2020). In the 
contemporary technological landscape, deep learning 
has gained widespread popularity among engineers 
worldwide. This approach facilitates efficient data 
processing for engineers and employees. Therefore, this 
research will hybrid both models CNN-ResNet50 and 
SVM, aiming to enhance the accuracy and precision of 
the results (Agarap, 2017; Ahlawat & Choudhary, 2020; 
Eroğlu et al., 2021; Karthik & Muthupandi, 2023; 
Khairandish et al., 2022; Wulandari et al., 2020.). 
 

Method  
 

Figure 1 illustrates the comprehensive framework 
of the overall implementation. As depicted, the crucial 
stages involve the hybrid part. Once the data is trained, 
the subsequent step is image classification. This ensures 
that the constructed model attains accurate predictions 
for images of beef and pork meat, aligning with the 
objectives of this research. 

The integration of a Convolutional Neural Network 
(CNN) with a Support Vector Machine (SVM) aims to 
enhance overall performance in a specific task or domain 
by leveraging the strengths of both techniques (Balarabe 
& Jordanov, 2021; İnik & Turan, 2018). The hybrid model 
aspires to create an optimal model by utilizing new 
feature extraction and SVMs' discriminative capacity, 
leading to improved accuracy, robustness, and 
interpretability. CNNs excel at extracting significant 
features from raw input data, particularly in tasks 
involving photos, videos, or sequential data. Their use 
of convolutional layers facilitates the development of 

hierarchical representations that capture meaningful 
patterns and structures. The hybrid model benefits from 
the CNNs' ability to extract rich and discriminative 
features. 
 

 
Figure 1. Framework Diagram of Methodology. 

 
System Design  

In this section on system design, various design 
aspects are emphasized to ensure the smooth training 
and validation of the system, covering all specified 
objectives. The system's model plays a crucial role in its 
functionality and data testing. The system comprises 
two models: CNN-ResNet50 and Support Vector 
Machine (SVM). 
 

 
Figure 2. Overall System Process. 
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Figure 2 depicts the system setup process. Initially, 
the computer connects to Google Colab. The image 
location is linked to Google Drive before providing the 
data directory to Google Colab. Once the connection 
between Google Colab and Google Drive, where the 
images are stored, is established, the necessary libraries 
are imported, and access to the images is granted, 
ensuring there are no errors during the connection. 
Subsequently, feature extraction is performed using 
ResNet50, and the new features are used as input for the 
SVM classifier. 

Subsequently, it is crucial to establish separate 
training and validation directories within Google Colab 
for the tested image data. This division ensures the 
proper organization of inputted images based on their 
assigned classes. During this process, the program 
determines the number of images present, 
encompassing both class-specific and total images used 
once the program is executed. Following this, the CNN 
and SVM models are constructed to validate the system's 
correctness. The next step involves inputting new 
features into the constructed models and fine-tuning the 
best parameters for image classification or prediction. 

 

Result and Discussion 
 

In the fine-tuning process, accuracy was commonly 
measured and evaluated after the best parameter tuned 
by the SVM classifier. Figure 5 displays the accuracy 
achieved after the training process was done by the grid-
search CV. “Grid- search-best-params_” shows the best 
param for the classifier model. Next is declaring “y-
pred” and calling the best estimator trained before, for 
predicting the images by the new features to be executed 
in the accuracy code. These results are valuable in 
making informed decisions, such as parameter 
adjustments, and modifications to the model 
architecture. Then the classifier model resulted in an 
accuracy of 100%. 
 

 
Figure 3. Comparing the Accuracy Single Model with  

Proposed Model. 

Figure 3 depicts a graphic comparing SVM, 
CNN(ResNet50), and CNN(ResNet50)-SVM model. 
Therefore, these 3 models with the same number and 
type of datasets are tested to know the proposed 
performance. Table 1 illustrates the optimal parameters 
fine-tuned by the hybrid model. The parameter C is 
chosen to balance the margin and classification error, 
where a higher C value imposes a greater penalty for 
classification errors, and a lower C value implies a 
smaller penalty. In this instance, the best C value is 
determined as 0.1, indicating that the svc-classifier 
performs well for classification. When the data is not 
easily separable in a straight line, it becomes difficult for 
the SVM soft margin to find a clear division on the 
hyperplane. This results in lower accuracy and weaker 
generalization. To address this challenge, a kernel is 
used to project the data into a higher-dimensional space, 
allowing for more straightforward linear separation. 
Common kernel types include linear, polynomial, and 
radial basis function (RBF). In this study, the best-
performing kernel is determined to be linear. 
 
Classification Report 

The classification report is a common evaluation 
metric used in machine learning and classification tasks. 
The classification report provides a details summary of 
the performance of a classification model by calculating 
various metrics for each class in the datasets. The 
commonly included metrics are precision, recall, F1 
score, and support. Figure 4 shows the classification 
report generated for the hybrid CNN(ResNet50)-SVM 
model developed. The complete dataset comprises 210 
images, with only 10 images allocated for testing in the 
test dataset. The accuracy score is 100%, with distinct 
classes for beef and pork. Otherwise, to know the 
performance is better than the single model, Figure 4.3 
describes that the performance of the hybrid is better 
than SVM and CNN(ResNet50). 
 

 
Figure 4. Evaluation Report of Single Model with 

Proposed Model. 
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Figure 5.  Accuracy calculation 

 

Confusion Matrix 
Figures 6 and 7 showcase SVM and CNN 

(ResNet50), respectively, while Figure 8 illustrates the 
hybrid model CNN(ResNet50)-SVM for comparison. In 
Figure 8, the confusion matrix from the hybrid 
CNN(ResNet50)- SVM model is presented. Evaluating 
the confusion matrices from the three models tested, the 
hybrid model demonstrates superior performance 
compared to the other two individual models. In the 
SVM confusion matrix (Figure 8), there are 20 true 
positives (TP) and 19 true negatives (TN), with 0 false 
positives (FP) and 1 false negative (FN) indicating a lack 
of precision in predictions, with zero incorrect 
prediction out of 20 true positives and one incorrect 
prediction out of 19 true negatives. The CNN(ResNet50) 
confusion matrix (Figure 8) shows 20 TP and 19 TN, with 
0 FP and 1 FN. While there are no false positive 
predictions, there's 1 false prediction out of 19 true 
negatives. On the other hand, the hybrid confusion 
matrix (Figure 7) performs well with 20 TP and 20 TN, 
and 0 FP and 0 FN. This suggests that the model built 
has no false predictions for either positive or negative 
outcomes. 
 

 
Figure 6. SVM Confusion Matrix. 

 

 
Figure 7. CNN(ResNet50) Confusion. 

 

 
Figure 8. CNN(ResNet50)-SVM Confusion Matrix. 

 

  
(a) (b) 

Figure 9. Texture difference, (a) Beef (b) Pork. 

 

Conclusion  

 
The CNN(ResNet50)-SVM model demonstrated a 

remarkable ability, boasting an impressive accuracy rate 
of 100%. These outcomes underscored the 
CNN(ResNet50)-SVM model's robustness and efficacy, 
particularly in the realm of accurately identifying a 
diverse range of meat items. To further validate the 
proficiency of the CNN(ResNet50)-SVM model, an array 
of comprehensive assessments was executed. This 
included the generation of a confusion matrix and a 
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detailed classification report, facilitated through the 
utilization of the Google Colab platform. These 
analytical tools served as a litmus test, providing 
valuable insights into the model's adeptness at correctly 
categorizing meat items, thus fortifying its reliability 
and real-world applicability. Contributions of this 
research to the realm of meat recognition by using 
technology. These findings illuminate the vast potential 
of improving to the application level as a precise and 
dependable tool for individuals. This technology holds 
the promise of significantly augmenting awareness of 
selecting of meat at any market, thereby contributing to 
improved belief of the customer to the trader and 
enhanced effectiveness in transactions at the market. 
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